演繹推理教案分析
演繹推理教案分析
一、教材分析
推理是高考的重要的內容,推理包括合情推理與演繹推理,由于解答高考題的過程就是推理的過程,因此本部分內容的考察將會滲透到每一個高考題中,考察推理的基本思想和方法,既可能在選擇題中和填空題中出現,也可能在解答題中出現。
二、目標
(1)知識與能力:了解演繹推理的含義及特點,會將推理寫成三段論的形式
(2)過程與方法:了解合情推理和演繹推理的區別與聯系
(3)情感態度價值觀:了解演繹推理在數學證明中的重要地位和日常生活中的作用,養成言之有理論證有據的習慣。
三、重點難點
教學重點:演繹推理的含義與三段論推理及合情推理和演繹推理的區別與聯系
教學難點:演繹推理的應用
四、教學方法:探究法
五、課時安排:1課時
六、教學過程
1. 填一填:
① 所有的金屬都能夠導電,銅是金屬,所以 ;
② 太陽系的大行星都以橢圓形軌道繞太陽運行,冥王星是太陽系的大行星,因此 ;
③ 奇數都不能被2整除,2007是奇數,所以 .
2.討論:上述例子的推理形式與我們學過的合情推理一樣嗎?
3.小結:
① 概念:從一般性的原理出發,推出某個特殊情況下的結論,我們把這種推理稱為____________.
要點:由_____到_____的推理.
② 討論:演繹推理與合情推理有什么區別?
③ 思考:“所有的金屬都能夠導電,銅是金屬,所以銅能導電”,它由幾部分組成,各部分有什么特點?
小結:“三段論”是演繹推理的一般模式:
第一段:_________________________________________;
第二段:_________________________________________;
第三段:____________________________________________.
④ 舉例:舉出一些用“三段論”推理的例子.
例1:證明函數 在 上是增函數.
例2:在銳角三角形ABC中, ,D,E是垂足. 求證:AB的中點M到D,E的距離相等.
當堂檢測:
討論:因為指數函數 是增函數, 是指數函數,則結論是什么?
討論:演繹推理怎樣才能使得結論正確?
比較:合情推理與演繹推理的區別與聯系?
課堂小結
課后練習與提高
1.演繹推理是以下列哪個為前提,推出某個特殊情況下的結論的推理方法( )
A.一般的原理原則; B.特定的命題;
C.一般的命題; D.定理、公式.
2.“因為對數函數 是增函數(大前提),而 是對數函數(小前提),所以 是增函數(結論).”上面的推理的錯誤是( )
A.大前提錯導致結論錯; B.小前提錯導致結論錯;
C.推理形式錯導致結論錯; D.大前提和小前提都錯導致結論錯.
3.下面幾種推理過程是演繹推理的是( )
A.兩條直線平行,同旁內角互補,如果∠A和∠B是兩條平行直線的同旁內角,則∠A+∠B =180°;B.由平面三角形的性質,推測空間四面體的性質;.
4.補充下列推理的三段論:
(1)因為互為相反數的兩個數的和為0,又因為 與 互為相反數且________________________,所以 =8.
(2)因為_____________________________________,又因為 是無限不循環小數,所以 是無理數.
七、板書設計
八、教學反思
【演繹推理教案分析】相關文章:
女媧造人的教案分析01-28
《陳奐生上城》教案分析03-19
《慢慢走,欣賞啊》教案分析12-16
爺爺的壓歲錢教案分析03-20
《再見了,親人》重難點分析教案03-20
在電子表格里如何打勾教案分析03-19
二年級數學《簡單的推理》優秀評課稿06-08
校園網貸的分析總結03-20
高二英語學科分析總結11-30
茶館經營現狀的市場分析報告03-29