含乘方的有理數混合運算人教版教案
作為一位兢兢業業的人民教師,總不可避免地需要編寫教案,借助教案可以恰當地選擇和運用教學方法,調動學生學習的積極性。我們應該怎么寫教案呢?下面是小編精心整理的含乘方的有理數混合運算人教版教案,歡迎大家借鑒與參考,希望對大家有所幫助。
一、學習目標
1.能確定有理數加、減、乘、除、乘方混合運算的順序;
2.掌握含乘方的有理數的混合運算順序,并掌握簡便運算技巧;
3.偶次冪的非負性的應用.
二、知識回顧
1.在2+ ×(-6)這個式子中,存在著3種運算.
2.上面這個式子應該先算乘方、再算2 、最后加法.
三、新知講解
1.偶次冪的非負性
若a是任意有理數,則(n為正整數),特別地,當n=1時,有.
2.有理數的混合運算順序
①先乘方,再乘除,最后加減;
②同級運算,從左到右進行;
③如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。
四、典例探究
1.有理數混合運算的順序意識
【例1】計算:-1-3×(-2)3+(-6)÷
總結:做有理數的混合運算時,應注意以下運算順序:
先乘方,再乘除,最后加減;
同級運算,從左到右進行;
如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行.
練1計算:-2×(-4)2+3-(-8)÷ +
2.有理數混合運算的轉化意識
【例2】計算:(-2)3÷(-1 )2+3 ×(- )-0.25
總結:將算式中的除法轉化為乘法,減法轉化成加法,乘方轉化為乘法,有時還要將帶分數轉化為假分數,小數轉化為分數等,再進行計算.
練2計算:
3.有理數混合運算的符號意識
【例3】計算:-42-5×(-2)× -(-2)3
總結:
在有理數運算中,最容易出錯的就是符號.
符號“-”即可以表示運算符號,即減號;又可以表示性質符號,即負號;還可以表示相反數.
要結合具體情況,弄清式中每個“-”的具體含義,養成先定符號,再算絕對值的良好習慣.
練3計算:
4.有理數混合運算的簡算意識
【例4】計算:[1 -( )× ]÷5
總結:對于較復雜的一些計算題,應注意運用有理數的運算律和一定的運算技巧,從而找到簡便運算的方法,以便有效地簡化計算過程,提高運算速度和正確率.
練4計算:[2 -( )×2]÷
5.利用數的乘方找規律
【例5】瑞士中學教師巴爾末成功地從光譜數據……中得到巴爾末公式從而打開了光譜奧妙的大門.
題中的這組數據是按什么規律排列的?
請你按這種規律寫出第七個數據.
總結:
這是一道規律探索題.規律探索題是指給出一列數字或一列式子或一組圖形的前幾個,通過歸納、猜想,推出一般性的`結論.
探索規律的時候,要結合學過的知識仔細分析數據特點,乘方經常出現在有理數的規律題中,所以要從乘方的角度出發考慮.
練5
五、課后小測一、選擇題
1.下列各式的結果中,最大的為( ).
A. B.
C. D.
2.32015的個位數字是( ).
A.3 B.9 C.7D.1
3.已知,那么(a+b)20xx的值是( ).
A.-1 B.1 C.-32015 D.32015
二、填空題
4.a與b互為相反數,c與d互為倒數,x的絕對值為2,則x2+(a+b)20xx+(-cd)20xx=________.
三、解答題
5.計算:
(1) ;
(2) .
6.計算:
(1) ;
(2) .
7.計算:
(1) ;
(2) .
8.計算:
(1) ;
(2) .
9.已知與互為相反數,求:
(1) ;(2) .
典例探究答案:
【例1】【解析】原式=-1-3×(-8)+(-6)÷
=-1-(-24)+(-54)
=-1+24-54
=-31
練1【解析】原式=-2×16+3-(-8)÷ + =-32+3-(-32)+ =3
【例2】【解析】原式=(-2)3÷(- )2+ ×(- )-
=-8÷ +(- )-
=-8× +(- )-
=-
練2【解析】原式=9×( )-16×(-2)+ × = +32+2=
【例3】【解析】原式=-16+1-(-8)
=-16+1+8
=-7
練3【解析】原式=-4-(-27)×1-(-1)
=-4+27+1
=24
【例4】【解析】原式=[ -( )×(-64)]÷5
=[ -( )]÷5
=( -20)×
= × -20×
= -4=-3
練4【解析】原式=[ -( )]÷
=( - )×8
=19-2- +3
=
【例5】【解析】(1)觀察這組數據,發現分子都是某一個數的平方,分別為32,42,52,62……分母和分子相差4,由此發現排列的規律.即:第n個數可以表示為.
(2)第七個數據為.
練5【解析】n+1/n+2=(n+1)2/n+3
課后小測答案:
一、選擇題
1.C
2.C
3.A
二、填空題
4.3
三、解答題
5.(1)原式=-16-16-1-1=-34;
(2)原式= =-30.
6.(1)-27;(2)31.
7.(1)原式=16×(-4)+5=-64+5=-59;
(2)原式= =0.
8.(1)原式=-64-16-9×( )=-64-16+7=-73;
(2)原式= .
9.解:由題意,得.
又因為,,
所以,,得a=2,b=-1.
所以(1) ;
(2) .
【含乘方的有理數混合運算人教版教案】相關文章:
2.有理數乘方反思