初一數(shù)學(xué)教案設(shè)計(jì)

時(shí)間:2022-08-03 17:12:38 教案 我要投稿

初一數(shù)學(xué)教案設(shè)計(jì)3篇

  作為一位兢兢業(yè)業(yè)的人民教師,往往需要進(jìn)行教案編寫(xiě)工作,借助教案可以更好地組織教學(xué)活動(dòng)。教案要怎么寫(xiě)呢?下面是小編精心整理的初一數(shù)學(xué)教案設(shè)計(jì)3篇,歡迎大家分享。

初一數(shù)學(xué)教案設(shè)計(jì)3篇

初一數(shù)學(xué)教案設(shè)計(jì)3篇1

  一.教學(xué)目標(biāo)

  1.知識(shí)與技能

 。1)通過(guò)足球賽中的凈勝球數(shù),使學(xué)生掌握有理數(shù)加法法則,并能運(yùn)用法則進(jìn)行計(jì)算;

 。2)在有理數(shù)加法法則的教學(xué)過(guò)程中,注意培養(yǎng)學(xué)生的運(yùn)算能力.

  2.?dāng)?shù)學(xué)思考

  通過(guò)觀(guān)察,比較,歸納等得出有理數(shù)加法法則。

  3.解決問(wèn)題

  能運(yùn)用有理數(shù)加法法則解決實(shí)際問(wèn)題。

  4.情感與態(tài)度

  認(rèn)識(shí)到通過(guò)師生合作交流,學(xué)生主動(dòng)叁與探索獲得數(shù)學(xué)知識(shí),從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。

  5.重點(diǎn)

  會(huì)用有理數(shù)加法法則進(jìn)行運(yùn)算.

  6.難點(diǎn)

  異號(hào)兩數(shù)相加的法則.

  二.教材分析

  “有理數(shù)的加法”是人教版七年級(jí)數(shù)學(xué)上冊(cè)第一章有理數(shù)的第三節(jié)內(nèi)容,本節(jié)內(nèi)容安排四個(gè)課時(shí),本課時(shí)是本節(jié)內(nèi)容的第一課時(shí),本課設(shè)計(jì)主要是通過(guò)球賽中凈勝球數(shù)的實(shí)例來(lái)明確有理數(shù)加法的意義,引入有理數(shù)加法的法則,為今后學(xué)習(xí)“有理數(shù)的減法”做鋪墊。

  三.學(xué)校與學(xué)生情況分析

  沖坡中學(xué)是樂(lè)東縣利國(guó)鎮(zhèn)的一所完全中學(xué),學(xué)生都來(lái)自農(nóng)村,學(xué)生的基礎(chǔ)及學(xué)習(xí)習(xí)慣是比較差。學(xué)生對(duì)新的課堂教學(xué)方法不是很適應(yīng);不過(guò),在新的教學(xué)理念的指導(dǎo)下,舊的教學(xué)方法和學(xué)習(xí)方法逐步淡化,而是培養(yǎng)學(xué)生的觀(guān)察,比較,歸納及自主探索和合作交流能力,F(xiàn)在,班級(jí)中已初步形成合作交流和勇于探究的良好學(xué)風(fēng),學(xué)生間互相評(píng)價(jià)和師生互動(dòng)的課堂氣氛已逐步形成。

  四.教學(xué)過(guò)程

  (一)問(wèn)題與情境

  我們已經(jīng)熟悉正數(shù)的運(yùn)算,然而實(shí)際問(wèn)題中做加法運(yùn)算的數(shù)有可能超出正數(shù)范圍。例如,足球循環(huán)賽中,通常把進(jìn)球數(shù)記為正數(shù),失球數(shù)記為負(fù)數(shù),它們的和叫作凈勝球數(shù)。章前言中,紅隊(duì)進(jìn)4個(gè)球,失2個(gè)球;藍(lán)隊(duì)進(jìn)1個(gè)球,失1個(gè)球。于是紅隊(duì)的凈勝球?yàn)?/p>

  4+(-2),

  黃隊(duì)的凈勝球?yàn)?/p>

  1+(-1)。

  這里用到正數(shù)與負(fù)數(shù)的加法。

  (二)、師生共同探究有理數(shù)加法法則

  前面我們學(xué)習(xí)了有關(guān)有理數(shù)的一些基礎(chǔ)知識(shí),從今天起開(kāi)始學(xué)習(xí)有理數(shù)的運(yùn)算.這節(jié)課我們來(lái)研究?jī)蓚(gè)有理數(shù)的加法.

  兩個(gè)有理數(shù)相加,有多少種不同的情形?

  為此,我們來(lái)看一個(gè)大家熟悉的實(shí)際問(wèn)題:

  足球比賽中贏球個(gè)數(shù)與輸球個(gè)數(shù)是相反意義的量.若我們規(guī)定贏球?yàn)椤罢,輸球(yàn)椤柏?fù)”,打平為“0”.比如,贏3球記為+3,輸1球記為-1.學(xué)校足球隊(duì)在一場(chǎng)比賽中的勝負(fù)可能有以下各種不同的情形:

  (1)上半場(chǎng)贏了3球,下半場(chǎng)贏了1球,那么全場(chǎng)共贏了4球.也就是

  (+3)+(+1)=+4.

  (2)上半場(chǎng)輸了2球,下半場(chǎng)輸了1球,那么全場(chǎng)共輸了3球.也就是

  (-2)+(-1)=-3.

  現(xiàn)在,請(qǐng)同學(xué)們說(shuō)出其他可能的情形.

  答:上半場(chǎng)贏了3球,下半場(chǎng)輸了2球,全場(chǎng)贏了1球,也就是

  (+3)+(-2)=+1;

  上半場(chǎng)輸了3球,下半場(chǎng)贏了2球,全場(chǎng)輸了1球,也就是

  (-3)+(+2)=-1;

  上半場(chǎng)贏了3球下半場(chǎng)不輸不贏,全場(chǎng)仍贏3球,也就是

  (+3)+0=+3;

  上半場(chǎng)輸了2球,下半場(chǎng)兩隊(duì)都沒(méi)有進(jìn)球,全場(chǎng)仍輸2球,也就是

  (-2)+0=-2;

  上半場(chǎng)打平,下半場(chǎng)也打平,全場(chǎng)仍是平局,也就是

  0+0=0.

  上面我們列出了兩個(gè)有理數(shù)相加的7種不同情形,并根據(jù)它們的具體意義得出了它們相加的和.但是,要計(jì)算兩個(gè)有理數(shù)相加所得的和,我們總不能一直用這種方法.現(xiàn)在請(qǐng)同學(xué)們仔細(xì)觀(guān)察比較這7個(gè)算式,你能從中發(fā)現(xiàn)有理數(shù)加法的運(yùn)算法則嗎?也就是結(jié)果的符號(hào)怎么定?絕對(duì)值怎么算?

  這里,先讓學(xué)生思考,師生交流,再由學(xué)生自己歸納出有理數(shù)加法法則:

  1.同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;

  2.絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值,互為相反數(shù)的兩個(gè)數(shù)相加得0;

  3.一個(gè)數(shù)同0相加,仍得這個(gè)數(shù).

  (三)、應(yīng)用舉例 變式練習(xí)

  例1 口答下列算式的結(jié)果

  (1)(+4)+(+3); (2)(-4)+(-3); (3)(+4)+(-3); (4)(+3)+(-4);

  (5)(+4)+(-4); (6)(-3)+0; (7)0+(+2); (8)0+0.

  學(xué)生逐題口答后,師生共同得出

  進(jìn)行有理數(shù)加法,先要判斷兩個(gè)加數(shù)是同號(hào)還是異號(hào),有一個(gè)加數(shù)是否為零;再根據(jù)兩個(gè)加數(shù)符號(hào)的具體情況,選用某一條加法法則.進(jìn)行計(jì)算時(shí),通常應(yīng)該先確定“和”的符號(hào),再計(jì)算“和”的絕對(duì)值.

  例2(教科書(shū)的例1)

  解:(1)(-3)+(-9) (兩個(gè)加數(shù)同號(hào),用加法法則的第2條計(jì)算)

  =-(3+9) (和取負(fù)號(hào),把絕對(duì)值相加)

  =-12.

 。2)(-4.7)+3.9 (兩個(gè)加數(shù)異號(hào),用加法法則的第2條計(jì)算)

  =-(4.7-3.9) (和取負(fù)號(hào),把大的絕對(duì)值減去小的絕對(duì)值)

  =-0.8

  例3(教科書(shū)的例2)教師在算出紅隊(duì)的凈勝球數(shù)后,學(xué)生自己算黃隊(duì)和藍(lán)隊(duì)的凈勝球數(shù)

  下面請(qǐng)同學(xué)們計(jì)算下列各題以及教科書(shū)第23頁(yè)練習(xí)第1與第2題

  (1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

  學(xué)生書(shū)面練習(xí),四位學(xué)生板演,教師巡視指導(dǎo),學(xué)生交流,師生評(píng)價(jià)。

  (四)、小結(jié)

  1.本節(jié)課你學(xué)到了什么?

  2.本節(jié)課你有什么感受?(由學(xué)生自己小結(jié))

  (五)練習(xí)設(shè)計(jì)

  1.計(jì)算:

  (1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4)(+6)+(+9);

  (5)67+(-73); (6)(-84)+(-59); (7)33+48; (8)(-56)+37.

  2.計(jì)算:

  (1)(-0.9)+(-2.7); (2)3.8+(-8.4); (3)(-0.5)+3;

  (4)3.29+1.78; (5)7+(-3.04); (6)(-2.9)+(-0.31);

  (7)(-9.18)+6.18; (8)4.23+(-6.77); (9)(-0.78)+0.

  4.用“>”或“<”號(hào)填空:

  (1)如果a>0,b>0,那么a+b ______0;

  (2)如果a<0,b<0,那么a+b ______0;

  (3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

  (4)如果a<0,b>0,|a|>|b|,那么a+b ______0.

  五.教學(xué)反思

  “有理數(shù)的加法”的教學(xué),可以有多種不同的設(shè)計(jì)方案.大體上可以分為兩類(lèi):一類(lèi)是較快地由教師給出法則,用較多的時(shí)間(30分鐘以上)組織學(xué)生練習(xí),以求熟練地掌握法則;另一類(lèi)是適當(dāng)加強(qiáng)法則的形成過(guò)程,從而在此過(guò)程中著力培養(yǎng)學(xué)生的觀(guān)察、比較、歸納能力,相應(yīng)地適當(dāng)壓縮應(yīng)用法則的練習(xí),如本教學(xué)設(shè)計(jì).

  現(xiàn)在,試比較這兩類(lèi)教學(xué)設(shè)計(jì)的得失利弊.

  第一種方案,教學(xué)的重點(diǎn)偏重于讓學(xué)生通過(guò)練習(xí),熟悉法則的應(yīng)用,這種教法近期效果較好.

  第二種方案,注重引導(dǎo)學(xué)生參與探索、歸納有理數(shù)加法法則的過(guò)程,主動(dòng)獲取知識(shí).這樣,學(xué)生在這節(jié)課上不僅學(xué)懂了法則,而且能感知到研究數(shù)學(xué)問(wèn)題的一些基本方法.

  這種方案減少了應(yīng)用法則進(jìn)行計(jì)算的練習(xí),所以學(xué)生掌握法則的熟練程度可能稍差,這是教學(xué)中應(yīng)當(dāng)注意的問(wèn)題.但是,在后續(xù)的教學(xué)中學(xué)生將千萬(wàn)次應(yīng)用“有理數(shù)加法法則”進(jìn)行計(jì)算,故這種缺陷是可以得到彌補(bǔ)的.第一種方案削弱了得出結(jié)論的“過(guò)程”,失去了培養(yǎng)學(xué)生觀(guān)察、比較、歸納能力的一次機(jī)會(huì).權(quán)衡利弊,我們主張采用第二種教學(xué)方法。

  六.點(diǎn)評(píng)

  潘老師對(duì)本節(jié)課的設(shè)計(jì)是比較好的,體現(xiàn)學(xué)生是學(xué)習(xí)的主人,教師是教學(xué)活動(dòng)的組織者,引導(dǎo)者和叁與者。的確,新課程的實(shí)施給教師提出了全新的挑戰(zhàn)。在新課程中,教學(xué)觀(guān)念的轉(zhuǎn)變和課程意識(shí)的建立是首要的,教學(xué)不是教“教科書(shū)”,而是經(jīng)由“教科書(shū)”來(lái)教,新課程給教師留下了廣闊的空間,教師在教學(xué)中要站在課程標(biāo)準(zhǔn)的角度挖掘教材,把教材內(nèi)容與學(xué)生感興趣的事物結(jié)合起來(lái),寓教于樂(lè),充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。

初一數(shù)學(xué)教案設(shè)計(jì)3篇2

  一、教材分析

  (一)教材的地位和作用

  本節(jié)內(nèi)容是一元一次方程應(yīng)用的延伸與拓展,它進(jìn)一步讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過(guò)程,同時(shí)又滲透了函數(shù)與不等式的思想,為以后內(nèi)容學(xué)習(xí)奠定了必要的數(shù)學(xué)基礎(chǔ),本節(jié)內(nèi)容具有承上啟下的作用.學(xué)生能深刻地認(rèn)識(shí)到方程是刻畫(huà)現(xiàn)實(shí)世界有效的數(shù)學(xué)模型,領(lǐng)悟到“方程”的數(shù)學(xué)思想方法.總之,本節(jié)內(nèi)容無(wú)論在知識(shí)上還是在數(shù)學(xué)思想方法上,都是十分很好的素材,能很好培養(yǎng)學(xué)生的探索精神、應(yīng)用意識(shí)以及創(chuàng)新能力.

  (二)教材的重難點(diǎn)

  本節(jié)的重點(diǎn)是探索并掌握列一元一次方程解決實(shí)際問(wèn)題的方法.而方程的建模思想學(xué)生還是初步接觸,尋找相等關(guān)系對(duì)學(xué)生來(lái)說(shuō)仍相當(dāng)困難,所以確定“找出已知量與未知量之間的關(guān)系,尤其是相等關(guān)系”為本節(jié)的難點(diǎn)之一,列方程解應(yīng)用題的最終目標(biāo)是運(yùn)用方程的解對(duì)客觀(guān)現(xiàn)實(shí)作出合理的解釋?zhuān)@是本節(jié)的難點(diǎn)之二.

  二、教學(xué)目標(biāo)分析

  (一)知識(shí)技能目標(biāo)

  1.目標(biāo)內(nèi)容

  (1) 結(jié)合生活實(shí)際,會(huì)在獨(dú)立思考后與他人合作,結(jié)合估算和試探,列出一元一次方程解決本節(jié)的三個(gè)實(shí)際問(wèn)題,并能解釋結(jié)果的實(shí)際意義及其合理性.

  (2) 培養(yǎng)學(xué)生建立方程模型來(lái)分析、解決實(shí)際問(wèn)題的能力以及探索精神、合作意識(shí).

  2.目標(biāo)分析

  (1) 本節(jié)的內(nèi)容就是通過(guò)列方程、解方程來(lái)解決實(shí)際問(wèn)題,這是必須掌握的知識(shí),估算與試探的思維方法也很重要,這是發(fā)現(xiàn)和解決問(wèn)題的有效途徑.

  (2) 七年級(jí)的學(xué)生對(duì)數(shù)學(xué)建模還比較陌生,建模能突出應(yīng)用數(shù)學(xué)的意識(shí),而探索精神和合作意識(shí)又是課標(biāo)所大力倡導(dǎo)的,因而必須加強(qiáng)培養(yǎng)學(xué)生這方面的能力.

  (二)過(guò)程目標(biāo)

  1.目標(biāo)內(nèi)容

  在活動(dòng)中感受方程思想在數(shù)學(xué)中的作用,進(jìn)一步增強(qiáng)應(yīng)用意識(shí).

  2.目標(biāo)分析

  利用方程解決問(wèn)題是有用的數(shù)學(xué)方法,學(xué)生在前兩節(jié)的數(shù)學(xué)活動(dòng)中,有了一些初步的經(jīng)驗(yàn),但是更接近生活,更富有挑戰(zhàn)性的問(wèn)題則需要師生合作,探索解決.

  (三)情感目標(biāo)

  1.目標(biāo)內(nèi)容

  (1) 在探索中獲得成功的體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,享受與他人合作的樂(lè)趣,建立自信心.

  (2) 通過(guò)對(duì)實(shí)際問(wèn)題的解決,進(jìn)一步體會(huì)“數(shù)學(xué)來(lái)源于生活,且服務(wù)于生活”的辯證思想.

  2.目標(biāo)分析

  七年級(jí)學(xué)生的年齡特征決定了他們好奇心強(qiáng)、思想活躍、求知心切.利用教材培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣、方法和品質(zhì),這是落實(shí)新課標(biāo)倡導(dǎo)的教育理念的關(guān)鍵.

  三、教材處理與教法分析

  本節(jié)內(nèi)容擬定兩課時(shí)完成,今天說(shuō)課的內(nèi)容是第一課時(shí)(探究Ⅰ、探究Ⅱ).根據(jù)本節(jié)課的特點(diǎn)及七年級(jí)學(xué)生的心理特征和認(rèn)知特征,本節(jié)課采用探索發(fā)現(xiàn)法進(jìn)行教學(xué),在活動(dòng)中充分體現(xiàn)學(xué)生是學(xué)習(xí)的主人,教師是學(xué)習(xí)的組織者、引導(dǎo)者、合作者.本課借助多媒體輔助教學(xué),給學(xué)生以直觀(guān)形象的演示,增強(qiáng)感性認(rèn)識(shí),增強(qiáng)教學(xué)效果.課中以設(shè)疑提問(wèn)、分組活動(dòng)等方式,激發(fā)學(xué)生的興趣,引導(dǎo)學(xué)生自主探索與合作交流,主動(dòng)獲得知識(shí).

  四、教學(xué)過(guò)程分析

  (一)教學(xué)過(guò)程流程圖

  探究Ⅰ

  (二)教學(xué)過(guò)程Ⅰ

  (以探究為主線(xiàn)、形式多樣化)

  1.問(wèn)題情境

  (1) 多媒體展示有關(guān)盈虧的新聞報(bào)道,感受生活實(shí)際.

  (2) 據(jù)此生活實(shí)例,展示探究Ⅰ,引入新課.

  考慮到學(xué)生不完全明白“盈利”、“虧損”這樣的商業(yè)術(shù)語(yǔ),故針對(duì)性地播放相關(guān)新聞報(bào)道,然后引出要探索的問(wèn)題Ⅰ.

  2.討論交流

  (1) 學(xué)生結(jié)合自己的生活實(shí)際,交流對(duì)“盈利”、“虧損”含義的理解.

  (2) 學(xué)生交流后,老師提出問(wèn)題:某件商品的進(jìn)價(jià)是40元,賣(mài)出后盈利25%,那么利潤(rùn)是多少?如果賣(mài)出后虧損25%,利潤(rùn)又是多少?(利潤(rùn)是負(fù)數(shù),是什么意思?)

  (3) 要求學(xué)生對(duì)探究Ⅰ中商店的盈虧進(jìn)行估算,交流討論并說(shuō)明理由.在討論中學(xué)生對(duì)商店盈虧可能出現(xiàn)不同的觀(guān)點(diǎn),因此引導(dǎo)學(xué)生用數(shù)學(xué)方法解決問(wèn)題,統(tǒng)一認(rèn)識(shí).

  (4) 師生互動(dòng),要知道究竟是盈是虧,必須先知道什么?從而引出要算出每件衣服的進(jìn)價(jià).

  讓學(xué)生討論盈利和虧損的含義,理解其概念,建立感性認(rèn)識(shí);乍一看,大多數(shù)學(xué)生可能在大體估算后得到不虧不盈,直覺(jué)上也是如此,但要解決實(shí)際問(wèn)題,還要知其原價(jià)(未知量),從這一分析引入未知量,為后面建立模型,做了必要的鋪墊.

  3.建立模型

  (1) 學(xué)生自主探索,尋找已知量與未知量之間的關(guān)系,確定相等關(guān)系.

  (2) 學(xué)生分組,根據(jù)找出的相等關(guān)系列出方程,其中一組計(jì)算盈利25%的衣服的進(jìn)價(jià),另一組計(jì)算虧損25%的衣服的進(jìn)價(jià).

  (3) 師生互動(dòng):①兩件衣服的進(jìn)價(jià)和為_(kāi)_______;②兩件衣服的售價(jià)和為_(kāi)_______;③由于進(jìn)價(jià)________售價(jià),由此可知兩件衣服的盈虧情況.

 。ń處熂皶r(shí)給出完整的解答過(guò)程)

  學(xué)生分組、計(jì)算盈虧;教師參與、適當(dāng)提示;師生互動(dòng)、得到?jīng)Q策.這樣設(shè)計(jì),讓學(xué)生體會(huì)到合作交流、互相評(píng)價(jià)、互相尊重的學(xué)習(xí)方式,有利于學(xué)生知識(shí)的形成與發(fā)展,也有利于學(xué)生健康人格的養(yǎng)成.這樣設(shè)計(jì)易于突出重點(diǎn),突破難點(diǎn),鞏固應(yīng)用一元一次方程作工具來(lái)解決實(shí)際問(wèn)題的方法,也很好地讓學(xué)生從已有的經(jīng)驗(yàn)中、活動(dòng)中,有意義地構(gòu)建自己的知識(shí)結(jié)構(gòu),獲得富有成效的學(xué)習(xí)體驗(yàn).

  4.小結(jié)

  一個(gè)感悟:估算與主觀(guān)判斷往往與實(shí)際情況大相徑庭,需要我們通過(guò)準(zhǔn)確的計(jì)算來(lái)檢驗(yàn)自己的判斷.

  培養(yǎng)學(xué)生科學(xué)的學(xué)習(xí)態(tài)度與嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)作風(fēng).

  探究Ⅱ

  (三)教學(xué)過(guò)程Ⅱ

  1.在燈具店選購(gòu)燈具時(shí),由于兩種燈具價(jià)格、能耗的不同,引起矛盾沖突.

  恰當(dāng)?shù)膯?wèn)題情境激發(fā)學(xué)生探索的欲望,同時(shí)讓學(xué)生體會(huì)到數(shù)學(xué)來(lái)源于生活,又服務(wù)于生活的實(shí)用性.

  啟發(fā):選擇的目的是節(jié)省費(fèi)用,費(fèi)用又是由哪些因素決定的?學(xué)生討論得出結(jié)論:

  2.列代數(shù)式

  費(fèi)用=燈的售價(jià)+電費(fèi)

  電費(fèi)=0.5×燈的功率(千瓦)×照明時(shí)間(時(shí))

  在此基礎(chǔ)上,用t表示照明時(shí)間(小時(shí)).要求學(xué)生列出代數(shù)式表示這兩種燈的費(fèi)用.

  節(jié)能燈的費(fèi)用(元):60+0.5×0.011t.

  白熾燈的費(fèi)用(元):3+0.5×0.06t.

  分析各個(gè)量之間的關(guān)系,列出代數(shù)式,為后面列方程,并進(jìn)一步探索提供了基礎(chǔ).

  3.特值試探 具體感知

  學(xué)生分組計(jì)算:

  t=1000、20xx、2500、3000時(shí),這兩種燈具的使用費(fèi)用,填入下表:

  時(shí)間(小時(shí))1000200025003000節(jié)能燈的費(fèi)用(元)白熾燈的費(fèi)用(元) 學(xué)生填完表格后,展示由表格數(shù)據(jù)制成的條形統(tǒng)計(jì)圖.

  引導(dǎo)學(xué)生討論:從統(tǒng)計(jì)圖表,你發(fā)現(xiàn)了什么?

  問(wèn)題的答案是多樣的,師生共同得出:照明時(shí)間不同,作出的選擇不同.

  由于在前面的第二節(jié),學(xué)生已經(jīng)學(xué)過(guò)“兩種移動(dòng)電話(huà)計(jì)費(fèi)方式”的一道例題,因此學(xué)生應(yīng)該能較熟練地完成表格中的特值試探.又因?yàn)槠吣昙?jí)學(xué)生的認(rèn)知以直觀(guān)形象為主,再給出統(tǒng)計(jì)圖,完成特殊到一般,感性到理性的深化.

  4.方程建模

  觀(guān)察統(tǒng)計(jì)圖,你能看出使用時(shí)間為多少(小時(shí))時(shí),這兩種燈的費(fèi)用相等嗎?

  列出方程:

  60+0.5×0.011t=3+0.5×0.06t

  5.合作交流 解釋拓展

  (1) 照明時(shí)間小于2327小時(shí),用哪種燈省錢(qián)?照明時(shí)間超過(guò)2327小時(shí).但不超過(guò)3000小時(shí),用哪種燈省錢(qián)?

  學(xué)生分組討論,交流各自的看法.

  (2) 如果計(jì)劃照明3500小時(shí),則需購(gòu)買(mǎi)兩個(gè)燈,設(shè)計(jì)你認(rèn)為合理的選燈方案.

  學(xué)生分組、討論購(gòu)燈方案只有三種:①兩盞節(jié)能燈;②兩盞白熾燈;③一盞節(jié)能燈、一盞白熾燈.

  學(xué)生計(jì)算各種方案所需費(fèi)用.

  關(guān)于選燈方案③,學(xué)生可能會(huì)有不同的結(jié)果,先讓學(xué)生充分展示他們的計(jì)算理由,然后對(duì)學(xué)生得出“使用節(jié)能燈3000小時(shí),白熾燈500小時(shí)”的結(jié)論,給予充分肯定,并引導(dǎo)學(xué)生尋找理論依據(jù),列式驗(yàn)證:

  設(shè)節(jié)能燈的照明時(shí)間為t(小時(shí)),那么總費(fèi)用為:

  60+3+0.5×0.011t+0.5×0.06(3500-t)=168-0.0245t(0≤t≤3000)

  觀(guān)察上式可看出,只有當(dāng)t=3000時(shí),總費(fèi)用最低.

  培養(yǎng)學(xué)生合作交流,傾聽(tīng)他人意見(jiàn),并從交流中獲益的學(xué)習(xí)習(xí)慣,綜合各方面信息的能力.討論2需要考慮的情形不只一種,通過(guò)這一問(wèn)題,培養(yǎng)分類(lèi)討論的思想,養(yǎng)成縝密的思維品質(zhì).此處滲透著函數(shù)、不等式和分類(lèi)討論的思想,為后面學(xué)習(xí)實(shí)際問(wèn)題提供了實(shí)踐經(jīng)驗(yàn).

  6.反饋練習(xí)

  一家游泳館每年6~8月出售夏季會(huì)員證,每張會(huì)員證80元,只限本人使用,憑證購(gòu)入場(chǎng)券每張1元,不憑證購(gòu)入場(chǎng)券每張3元,討論并回答:

  (1) 什么情況下,購(gòu)會(huì)員證與不購(gòu)證付相同的錢(qián)?

  (2) 什么情況下,購(gòu)會(huì)員證比不購(gòu)證更合算?

  (3) 什么情況下,不購(gòu)會(huì)員證比購(gòu)證更合算?

  適時(shí)的反饋練習(xí),以加深學(xué)生對(duì)這一知識(shí)的理解,逐步完善自己的知識(shí)結(jié)構(gòu).

  (四)教學(xué)小結(jié)

  學(xué)生分組小結(jié)“本課學(xué)到了什么”,各組發(fā)言交流體驗(yàn)、教師總結(jié):

  五、設(shè)計(jì)說(shuō)明

  七年級(jí)學(xué)生的年齡特征決定了他們好奇心強(qiáng),思想活躍、求知心切.因此我從“以人為本”的理念出發(fā),依據(jù)數(shù)學(xué)的工具性和人文性等特點(diǎn),在整個(gè)教學(xué)活動(dòng)中始終關(guān)注學(xué)生的發(fā)展,培養(yǎng)學(xué)生的創(chuàng)新精神與創(chuàng)新能力.

  (一)充分尊重學(xué)生的主體地位

  發(fā)揮學(xué)生的主體作用,堅(jiān)持讓學(xué)生自主探索、合作交流,展示學(xué)生的思維過(guò)程.

  (二)樹(shù)立方程建模思想

  突出解釋與應(yīng)用,滲透函數(shù)、不等式、分類(lèi)討論等數(shù)學(xué)思想和方法,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí).

  (三)注重對(duì)學(xué)習(xí)過(guò)程與方法的評(píng)價(jià)

  關(guān)注學(xué)生參與數(shù)學(xué)活動(dòng)的熱情,與他人合作的態(tài)度,以及獨(dú)立地分析問(wèn)題、解決問(wèn)題的能力,力爭(zhēng)讓不同的人在數(shù)學(xué)上得到不同的發(fā)展.

  (1) 某種商品因換季打折出售,如果按定價(jià)的七五折出售將賠25元;而按定價(jià)的九折出售將賺20元.問(wèn)這種商品的定價(jià)為多少元?

  (2) 某商店為了促銷(xiāo)A牌高級(jí)洗衣機(jī),規(guī)定在元旦那天購(gòu)買(mǎi)該機(jī)可以分兩期付款,在購(gòu)買(mǎi)時(shí)先付一筆款,余下部分及它的利息(年利率為5.6%)在明年的元旦付清,該洗衣機(jī)售價(jià)是每臺(tái)8 224元,若兩次付款相同,問(wèn)每次應(yīng)付款多少元?

  (3) 工廠(chǎng)甲、乙兩車(chē)間去年計(jì)劃共完成稅利720萬(wàn)元,結(jié)果甲車(chē)間完成了計(jì)劃的115%,乙車(chē)間完成了計(jì)劃的110%,兩車(chē)間共完成稅利812萬(wàn)元,求去年兩個(gè)車(chē)間各超額完成稅利多少萬(wàn)元?

  (4) 一輛汽車(chē)用40千米/時(shí)的速度由甲地駛向乙地,車(chē)行3小時(shí)后,因遇雨平均速度被迫每小時(shí)減少10千米,結(jié)果到達(dá)乙地時(shí)比預(yù)計(jì)的時(shí)間晚了45分鐘,求甲、乙兩地間的距離.

  (5) 甲、乙兩人合辦一小型服裝廠(chǎng),并協(xié)議按照投資額的.比例多少分配所得利潤(rùn),已知甲與乙投資比例為3∶4,第一年共獲利30 800元,問(wèn)甲、乙兩人可獲利潤(rùn)多少元?

  (6) 有人問(wèn)老師班級(jí)有多少名學(xué)生時(shí),老師說(shuō):“一半學(xué)生在學(xué)數(shù)學(xué),四分之一學(xué)生在學(xué)音樂(lè),七分之一的學(xué)生在讀外語(yǔ),還剩六名學(xué)生在操場(chǎng)踢球.”你知道這個(gè)班有多少名學(xué)生嗎?

  (7) 某人10時(shí)10分離家去趕11時(shí)整的火車(chē),已知他家離車(chē)站10千米,他離家后先以3千米/時(shí)的速度走了5分鐘,然后乘公共汽車(chē)去車(chē)站,問(wèn)公共汽車(chē)每小時(shí)至少走多少千米才能不誤火車(chē)?

  綜合運(yùn)用

  4.某市居民生活用電基本價(jià)格是每度0.40元,若每月用電量超過(guò)a度,超出部分按基本電價(jià)的70%收費(fèi).

  (1) 某戶(hù)五月份用電84度,共交電費(fèi)30.72元,求a;

  (2) 若該戶(hù)六月份的電費(fèi)平均為每度0.36元,求六月份共用電多少度?應(yīng)交電費(fèi)多少元?

  5.為了鼓勵(lì)節(jié)約用水,市政府對(duì)自來(lái)水的收費(fèi)標(biāo)準(zhǔn)作如下規(guī)定:每月每戶(hù)不超過(guò)10噸部分,按0.45元/噸收費(fèi);超過(guò)10噸而不超過(guò)20噸部分,按0.80元/噸收費(fèi);超過(guò)20噸部分,按1.5元/噸收費(fèi).現(xiàn)已知李老師家六月份繳水費(fèi)14元,問(wèn)李老師家六月份用水多少?lài)崳?/p>

  6.一支自行車(chē)隊(duì)進(jìn)行訓(xùn)練,訓(xùn)練時(shí)所有隊(duì)員都以35千米/時(shí)的速度前進(jìn).突然,有一名隊(duì)員以45千米/時(shí)的速度獨(dú)自行進(jìn),行進(jìn)10千米后調(diào)轉(zhuǎn)車(chē)頭,仍以45千米/時(shí)的速度往回騎,直到與其他隊(duì)員會(huì)合.你知道這名隊(duì)員從離隊(duì)到與隊(duì)員重新會(huì)合,經(jīng)過(guò)了多長(zhǎng)時(shí)間嗎?

  7.有8名同學(xué)分別乘兩輛轎車(chē)趕往火車(chē)站,其中一輛轎車(chē)在距離火車(chē)站15千米時(shí)出現(xiàn)故障,此時(shí)離火車(chē)停止檢票時(shí)間還有42分,這時(shí)惟一可以利用的交通工具只有一輛轎車(chē),連司機(jī)在內(nèi)限乘5人,這輛小轎車(chē)的平均速度為60千米/時(shí).這8名同學(xué)都能趕上火車(chē)嗎?

  拓廣探索

  8.一家庭(父親、母親和孩子們)去某地旅游.甲旅行社說(shuō):“如父親買(mǎi)全票一張,其余人可享受半價(jià)優(yōu)惠.”乙旅行社說(shuō):“家庭旅行算集體票,按原價(jià)的優(yōu)惠.”這兩家旅行社的原價(jià)相同.你知道哪家旅行社更優(yōu)惠嗎?

  初一數(shù)學(xué)教案:有理數(shù)的乘法

  一、 學(xué)情分析:

  在此之前,本班學(xué)生已有探索有理數(shù)加法法則的經(jīng)驗(yàn),多數(shù)學(xué)生能在教師指導(dǎo)下探索問(wèn)題。由于學(xué)生已了解利用數(shù)軸表示加法運(yùn)算過(guò)程,不太熟悉水位變化,故改為用數(shù)軸表示乘法運(yùn)算過(guò)程。

  二、 課前準(zhǔn)備

  把學(xué)生按組間同質(zhì)、組內(nèi)異質(zhì)分為10個(gè)小組,以便組內(nèi)合作學(xué)習(xí)、組間競(jìng)爭(zhēng)學(xué)習(xí),形成良好的學(xué)習(xí)氣氛。

  三、 教學(xué)目標(biāo)

  1、 知識(shí)與技能目標(biāo)

  掌握有理數(shù)乘法法則,能利用乘法法則正確進(jìn)行有理數(shù)乘法運(yùn)算。

  2、 能力與過(guò)程目標(biāo)

  經(jīng)歷探索、歸納有理數(shù)乘法法則的過(guò)程,發(fā)展學(xué)生觀(guān)察、歸納、猜測(cè)、驗(yàn)證等能力。

  3、 情感與態(tài)度目標(biāo)

  通過(guò)學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。

  四、 教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):運(yùn)用有理數(shù)乘法法則正確進(jìn)行計(jì)算。

  難點(diǎn):有理數(shù)乘法法則的探索過(guò)程,符號(hào)法則及對(duì)法則的理解。

  五、 教學(xué)過(guò)程

  1、 創(chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。

  教師:由于長(zhǎng)期干旱,水庫(kù)放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問(wèn)放水抗旱前水庫(kù)水深多少米?

  學(xué)生:26米。

  教師:能寫(xiě)出算式嗎?

  學(xué)生:……

  教師:這涉及有理數(shù)乘法運(yùn)算法則,正是我們今天需要討論的問(wèn)題(教師板書(shū)課題)

  2、 小組探索、歸納法則

 。1)教師出示以下問(wèn)題,學(xué)生以組為單位探索。

  以原點(diǎn)為起點(diǎn),規(guī)定向東的方向?yàn)檎较,向西的方向(yàn)樨?fù)方向。

  a. 2 ×3

  2看作向東運(yùn)動(dòng)2米,×3看作向原方向運(yùn)動(dòng)3次。

  結(jié)果:向 運(yùn)動(dòng) 米

  2 ×3=

  b. -2 ×3

  -2看作向西運(yùn)動(dòng)2米,×3看作向原方向運(yùn)動(dòng)3次。

  結(jié)果:向 運(yùn)動(dòng) 米

  -2 ×3=

  c. 2 ×(-3)

  2看作向東運(yùn)動(dòng)2米,×(-3)看作向反方向運(yùn)動(dòng)3次。

  結(jié)果:向 運(yùn)動(dòng) 米

  2 ×(-3)=

  d. (-2) ×(-3)

  -2看作向西運(yùn)動(dòng)2米,×(-3)看作向反方向運(yùn)動(dòng)3次。

  結(jié)果:向 運(yùn)動(dòng) 米

 。-2) ×(-3)=

  e.被乘數(shù)是零或乘數(shù)是零,結(jié)果是人仍在原處。

 。2)學(xué)生歸納法則

  a.符號(hào):在上述4個(gè)式子中,我們只看符號(hào),有什么規(guī)律?

 。+)×(+)= 同號(hào)得

 。-)×(+)= 異號(hào)得

 。+)×(-)= 異號(hào)得

 。-)×(-)= 同號(hào)得

  b.積的絕對(duì)值等于 。

  c.任何數(shù)與零相乘,積仍為 。

 。3)師生共同用文字?jǐn)⑹鲇欣頂?shù)乘法法則。

  3、 運(yùn)用法則計(jì)算,鞏固法則。

  (1)教師按課本P75 例1板書(shū),要求學(xué)生述說(shuō)每一步理由。

 。2)引導(dǎo)學(xué)生觀(guān)察、分析例1中(3)(4)小題兩因數(shù)的關(guān)系,得出兩個(gè)有理數(shù)互為倒數(shù),它們的積為 。

 。3)學(xué)生做 P76 練習(xí)1(1)(3),教師評(píng)析。

 。4)教師引導(dǎo)學(xué)生做P75 例2,讓學(xué)生說(shuō)出每步法則,使之進(jìn)一步熟悉法則,同時(shí)讓學(xué)生總結(jié)出多因數(shù)相乘的符號(hào)法則。多個(gè)因數(shù)相乘,積的符號(hào)由 決定,當(dāng)負(fù)因數(shù)個(gè)數(shù)有 ,積為 ; 當(dāng)負(fù)因數(shù)個(gè)數(shù)有 ,積為 ;只要有一個(gè)因數(shù)為零,積就為 。

  4、 討論對(duì)比,使學(xué)生知識(shí)系統(tǒng)化。

  有理數(shù)乘法有理數(shù)加法同號(hào)得正取相同的符號(hào)把絕對(duì)值相乘

 。-2)×(-3)=6把絕對(duì)值相加

  (-2)+(-3)=-5異號(hào)得負(fù)取絕對(duì)值大的加數(shù)的符號(hào)把絕對(duì)值相乘

  (-2)×3= -6(-2)+3=1

  用較大的絕對(duì)值減小的絕對(duì)值任何數(shù)與零得零得任何數(shù) 5、 分層作業(yè),鞏固提高。

  六、 教學(xué)反思:

  本節(jié)課由情景引入,使學(xué)生迅速進(jìn)入角色,很快投入到探究有理數(shù)乘法法則上來(lái),提高了本節(jié)課的教學(xué)效率。在本節(jié)課的教學(xué)實(shí)施中自始至終引導(dǎo)學(xué)生探索、歸納,真正體現(xiàn)了以學(xué)生為主體的教學(xué)理念。本節(jié)課特別注重過(guò)程教學(xué),有利于培養(yǎng)學(xué)生的分析歸納能力。教學(xué)效果令人比較滿(mǎn)意。如果是在法則運(yùn)用時(shí),編制一些訓(xùn)練符號(hào)法則的口算題,把例2放在下一課時(shí)處理,效果可能更好。

  【點(diǎn)評(píng)】:本節(jié)課張老師首先創(chuàng)設(shè)了一個(gè)密切社會(huì)生活的問(wèn)題情景—抗旱,由此引入新課,并利用學(xué)生熟悉的數(shù)軸去探究有理數(shù)的乘法法則,充分體現(xiàn)了課程源于生活,服務(wù)于生活,學(xué)生的學(xué)習(xí)是在原有知識(shí)上的自我建構(gòu)的過(guò)程等理念,教學(xué)要面向?qū)W生的生活世界和社會(huì)實(shí)踐,教學(xué)活動(dòng)必須尊重學(xué)生已有的知識(shí)與經(jīng)驗(yàn),學(xué)生原有的知識(shí)和經(jīng)驗(yàn)是學(xué)習(xí)的基礎(chǔ),學(xué)生的學(xué)習(xí)是在原有知識(shí)和經(jīng)驗(yàn)基礎(chǔ)上的自我生成的過(guò)程。

  探索有理數(shù)乘法法則是本節(jié)課的重點(diǎn),同時(shí)它又是一個(gè)具有探索性又有挑戰(zhàn)性的問(wèn)題,因此張老師在這一教學(xué)環(huán)節(jié)花了大量的時(shí)間,精心設(shè)計(jì)了問(wèn)題訓(xùn)練單,將學(xué)生按組間同質(zhì)、組內(nèi)異質(zhì)的原則分學(xué)習(xí)小組開(kāi)展學(xué)習(xí)合作學(xué)習(xí),使學(xué)生經(jīng)歷了法則的探索過(guò)程,獲得了深層次的情感體驗(yàn),建構(gòu)知識(shí),獲得了解決問(wèn)題的方法,培養(yǎng)了學(xué)生的探索精神和創(chuàng)新能力。

  為了讓學(xué)生將獲得的新知識(shí)納入到原有的認(rèn)知結(jié)構(gòu)中去,便于記憶和提取,在教學(xué)的最后環(huán)節(jié),張老師組織學(xué)生對(duì)有理數(shù)的乘法和有理數(shù)的加法進(jìn)行對(duì)比,通過(guò)討論、比較使知識(shí)系統(tǒng)化、條理化,從而使自己的認(rèn)知結(jié)構(gòu)不斷地得以?xún)?yōu)化。學(xué)生自己建構(gòu)知識(shí),是建構(gòu)主義學(xué)習(xí)觀(guān)的基本觀(guān)點(diǎn),當(dāng)新知識(shí)獲得之后,必須按一定方式加以組織,為新知識(shí)找到“家”,并為新知識(shí)“安家落戶(hù)”。

  學(xué)生是一個(gè)活生生的人,是一個(gè)發(fā)展中的人,學(xué)生間的發(fā)展是極不平衡的,為了尊重學(xué)生的差異,以學(xué)生個(gè)體發(fā)展為本,張老師在教學(xué)中利用學(xué)生的個(gè)人性格不同,采用異質(zhì)分組,使不同性格的學(xué)生組對(duì)交流、互換角色,達(dá)到了性格互補(bǔ)的目的。采取分層作業(yè)的方式,讓不同的人在數(shù)學(xué)學(xué)習(xí)中得到了不同的發(fā)展,使每個(gè)人的認(rèn)識(shí)都得到完善,這正是新課程發(fā)展的核心理念──為了每一位學(xué)生的發(fā)展的具體體現(xiàn)。

  本節(jié)課我們也同時(shí)看到在新課引入和法則探究?jī)蓚(gè)教學(xué)環(huán)節(jié)中,張老師的設(shè)計(jì)與教材完全不同,充分體現(xiàn)了教師是用教材,而不是教教材,這也是新課程所倡導(dǎo)的教學(xué)理念。教師“教教科書(shū)”是傳統(tǒng)的“教書(shū)匠”的表現(xiàn),“用教科書(shū)教”才是現(xiàn)代教師應(yīng)有的姿態(tài)。我們教師應(yīng)從學(xué)生實(shí)際出發(fā),因材施教,創(chuàng)造性地使用教材,大膽對(duì)教材內(nèi)容進(jìn)行取舍、深加工、再創(chuàng)造,設(shè)計(jì)出活生生的、豐富多彩的課來(lái),充分有效地將教材的知識(shí)激活,形成有教師個(gè)性的教材知識(shí)。既要有能力把問(wèn)題簡(jiǎn)明地闡述清楚,同時(shí)也要有能力引導(dǎo)學(xué)生去探索、去自主學(xué)習(xí)。

初一數(shù)學(xué)教案設(shè)計(jì)3篇3

  教學(xué)目標(biāo)

  1、等腰三角形的概念、

  2、等腰三角形的性質(zhì)、

  3、等腰三角形的概念及性質(zhì)的應(yīng)用、

  教學(xué)重點(diǎn):

  1、等腰三角形的概念及性質(zhì)、

  2、等腰三角形性質(zhì)的應(yīng)用、

  教學(xué)難點(diǎn):

  等腰三角形三線(xiàn)合一的性質(zhì)的理解及其應(yīng)用、

  教學(xué)過(guò)程

 、、提出問(wèn)題,創(chuàng)設(shè)情境

  在前面的學(xué)習(xí)中,我們認(rèn)識(shí)了軸對(duì)稱(chēng)圖形,探究了軸對(duì)稱(chēng)的性質(zhì),并且能夠作出一個(gè)簡(jiǎn)單平面圖形關(guān)于某一直線(xiàn)的軸對(duì)稱(chēng)圖形,還能夠通過(guò)軸對(duì)稱(chēng)變換來(lái)設(shè)計(jì)一些美麗的圖案、這節(jié)課我們就是從軸對(duì)稱(chēng)的角度來(lái)認(rèn)識(shí)一些我們熟悉的幾何圖形、來(lái)研究:

 、偃切问禽S對(duì)稱(chēng)圖形嗎?

  ②什么樣的三角形是軸對(duì)稱(chēng)圖形?

  有的三角形是軸對(duì)稱(chēng)圖形,有的三角形不是、

  問(wèn)題:那什么樣的三角形是軸對(duì)稱(chēng)圖形?

  滿(mǎn)足軸對(duì)稱(chēng)的條件的三角形就是軸對(duì)稱(chēng)圖形,也就是將三角形沿某一條直線(xiàn)對(duì)折后兩部分能夠完全重合的就是軸對(duì)稱(chēng)圖形、

  我們這節(jié)課就來(lái)認(rèn)識(shí)一種成軸對(duì)稱(chēng)圖形的三角形──等腰三角形、

  Ⅱ、導(dǎo)入新課:

  要求學(xué)生通過(guò)自己的思考來(lái)做一個(gè)等腰三角形、

  作一條直線(xiàn)L,在L上取點(diǎn)A,在L外取點(diǎn)B,作出點(diǎn)B關(guān)于直線(xiàn)L的對(duì)稱(chēng)點(diǎn)C,連結(jié)AB、BC、CA,則可得到一個(gè)等腰三角形、

  等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形、相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角、同學(xué)們?cè)谧约鹤鞒龅牡妊切沃校⒚魉难⒌走叀㈨斀呛偷捉恰?/p>

  思考:

  1、等腰三角形是軸對(duì)稱(chēng)圖形嗎?請(qǐng)找出它的對(duì)稱(chēng)軸、

  2、等腰三角形的兩底角有什么關(guān)系?

  3、頂角的平分線(xiàn)所在的直線(xiàn)是等腰三角形的對(duì)稱(chēng)軸嗎?

  4、底邊上的中線(xiàn)所在的直線(xiàn)是等腰三角形的對(duì)稱(chēng)軸嗎?底邊上的高所在的直線(xiàn)呢?

  結(jié)論:等腰三角形是軸對(duì)稱(chēng)圖形、它的對(duì)稱(chēng)軸是頂角的平分線(xiàn)所在的直線(xiàn)、因?yàn)榈妊切蔚膬裳嗟龋园堰@兩條腰重合對(duì)折三角形便知:等腰三角形是軸對(duì)稱(chēng)圖形,它的對(duì)稱(chēng)軸是頂角的平分線(xiàn)所在的直線(xiàn)、

  要求學(xué)生把自己做的等腰三角形進(jìn)行折疊,找出它的對(duì)稱(chēng)軸,并看它的兩個(gè)底角有什么關(guān)系、

  沿等腰三角形的頂角的平分線(xiàn)對(duì)折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個(gè)等腰三角形的兩個(gè)底角相等,而且還可以知道頂角的平分線(xiàn)既是底邊上的中線(xiàn),也是底邊上的高、

  由此可以得到等腰三角形的性質(zhì):

  1、等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫(xiě)成“等邊對(duì)等角”)、

  2、等腰三角形的頂角平分線(xiàn),底邊上的中線(xiàn)、底邊上的高互相重合(通常稱(chēng)作“三線(xiàn)合一”)、

  由上面折疊的過(guò)程獲得啟發(fā),我們可以通過(guò)作出等腰三角形的對(duì)稱(chēng)軸,得到兩個(gè)全等的三角形,從而利用三角形的全等來(lái)證明這些性質(zhì)、同學(xué)們現(xiàn)在就動(dòng)手來(lái)寫(xiě)出這些證明過(guò)程)、

  如右圖,在△ABC中,AB=AC,作底邊BC的中線(xiàn)AD,因?yàn)?/p>

  所以△BAD≌△CAD(SSS)、

  所以∠B=∠C、

  ]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線(xiàn)AD,因?yàn)?/p>

  所以△BAD≌△CAD、

  所以BD=CD,∠BDA=∠CDA= ∠BDC=90°、

  [例1]如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,

  求:△ABC各角的度數(shù)、

  分析:根據(jù)等邊對(duì)等角的性質(zhì),我們可以得到

  ∠A=∠ABD,∠ABC=∠C=∠BDC,

  再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A、

  再由三角形內(nèi)角和為180°,就可求出△ABC的三個(gè)內(nèi)角、

  把∠A設(shè)為x的話(huà),那么∠ABC、∠C都可以用x來(lái)表示,這樣過(guò)程就更簡(jiǎn)捷、

  解:因?yàn)锳B=AC,BD=BC=AD,

  所以∠ABC=∠C=∠BDC、

  ∠A=∠ABD(等邊對(duì)等角)、

  設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,

  從而∠ABC=∠C=∠BDC=2x、

  于是在△ABC中,有

  ∠A+∠ABC+∠C=x+2x+2x=180°,

  解得x=36°、在△ABC中,∠A=35°,∠ABC=∠C=72°、

  [師]下面我們通過(guò)練習(xí)來(lái)鞏固這節(jié)課所學(xué)的知識(shí)、

 、、隨堂練習(xí):

  1、課本P51練習(xí)1、2、3、

  2、閱讀課本P49~P51,然后小結(jié)、

  Ⅳ、課時(shí)小結(jié)

  這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對(duì)性質(zhì)作了簡(jiǎn)單的應(yīng)用、等腰三角形是軸對(duì)稱(chēng)圖形,它的兩個(gè)底角相等(等邊對(duì)等角),等腰三角形的對(duì)稱(chēng)軸是它頂角的平分線(xiàn),并且它的頂角平分線(xiàn)既是底邊上的中線(xiàn),又是底邊上的高、

  我們通過(guò)這節(jié)課的學(xué)習(xí),首先就是要理解并掌握這些性質(zhì),并且能夠靈活應(yīng)用它們、

 、、作業(yè):課本P56習(xí)題12、3第1、2、3、4題、

  板書(shū)設(shè)計(jì)

  12、3、1、1等腰三角形

  一、設(shè)計(jì)方案作出一個(gè)等腰三角形

  二、等腰三角形性質(zhì):

  1、等邊對(duì)等角

  2、三線(xiàn)合一

【初一數(shù)學(xué)教案設(shè)計(jì)】相關(guān)文章:

數(shù)學(xué)教案設(shè)計(jì)07-05

數(shù)學(xué)廣角教案設(shè)計(jì)07-24

《用數(shù)學(xué)》教案設(shè)計(jì)10-08

數(shù)學(xué)線(xiàn)段的教案設(shè)計(jì)07-16

數(shù)學(xué)廣角教案設(shè)計(jì)07-16

《數(shù)學(xué)的廣角》教案設(shè)計(jì)07-18

數(shù)學(xué)應(yīng)用教案設(shè)計(jì)11-19

數(shù)學(xué)《整式》教案設(shè)計(jì)10-16

《數(shù)學(xué)樂(lè)園》教案設(shè)計(jì)10-08

久久综合国产中文字幕,久久免费视频国产版原创视频,欧美日韩亚洲国内综合网香蕉,久久久久久久久久国产精品免费
亚洲男人中文字幕一区 | 亚洲欧洲一区二区欧美国产 | 亚洲欧美综合另类久久精品 | 亚洲欭美日韩颜射在线 | 亚洲国产无线乱码在线观看 | 日韩欧美精品综合中文字幕 |