《反比例》教案
作為一名為他人授業解惑的教育工作者,有必要進行細致的教案準備工作,教案是備課向課堂教學轉化的關節點。那么什么樣的教案才是好的呢?下面是小編收集整理的《反比例》教案,歡迎大家分享。
《反比例》教案1
教學任務分析
教學目標
知識技能
通過對“杠桿原理”等實際問題與反比例函數關系的探究,使學生能夠從函數的觀點來解決一些實際問題
數學思考
通過對實際問題中變量之間關系的分析,建立函數模型,運用已學過的反比例函數知識加以解決,體會數學建模思想和學以致用的數學理念
解決問題
分析實際問題中變量之間的關系,建立反比例函數模型解決問題,進一步運用函數的圖像、性質挖掘杠桿原理中蘊涵的道理
情感態度
利用函數探索古希臘科學家阿基米德發現的“杠桿定律”,使學生的求知欲望得到激發,再通過自己所學知識解決了身邊的問題,大大提高了學生學習數學的興趣
重點
運用反比例函數解釋生活中的一些規律、解決一些實際問題
難點
把實際問題利用反比例函數轉化為數學問題加以解決
教學流程安排
活動流程圖
活動內容和目的
活動1創設情境,引出問題
活動2分析解決問題
活動3從函數的觀點進一步分析規律
活動4鞏固練習
活動5課堂小結、布置作業
教師提出生活中遇到的難題,請學生幫助解決,激發學生的興趣
與學生共同分析實際問題中的變量關系,引導學生利用反比例函數解決問題
引導學生追尋杠桿原理中蘊涵的規律,從反比例函數的圖象、性質等角度挖掘
通過課堂練習,提高學生運用反比例函數解決實際問題的能力
歸納、總結所學,體會利用函數的觀點解決實際問題
教學過程設計
問題與情境
師生行為
設計意圖
活動1
如何打開這個未開封的奶粉桶呢?—
教師提出實際生活中的問題,學生提出解決辦法,教師引出利用杠桿原理解決問題。
能否從數學角度探索杠桿原理中蘊涵的變量關系呢?
讓學生了解到日常生活中存在著許多兩個量之間具有反比例關系的例子,自然引入課題
活動2
展示問題1:
幾位同學玩撬石頭的游戲,已知阻力和阻力臂不變,分別是1200牛頓和0.5米,設動力為F,動力臂為。回答下列問題:
(1)動力F與動力臂有怎樣的函數關系?
(2)小剛、小強、小健、小明分別選取了動力臂為為1米、1.5米、2米、3米的撬棍,你能得出他們各自撬動石頭至少需要多大的力嗎?從上述的運算中我們觀察出什么規律?
不妨列表描點畫出圖象
(圖象在第三象限會有嗎?)
分析問題中變量間的關系
分析動力F與動力臂的關系,將撬石頭的實際問題轉化為反比例函數問題。由抽象到具體,驗證幾個具體的.數值通過驗證幾個數值,進行列表描點,作出圖象觀察規律,,進一步從圖象的變化趨勢上解釋規律
在數學課上引用一個物理力學的實際問題,一下子抓住了學生的獵奇心理,激發了他們的學習興趣;最后落實到運用數學來解決,學生可以體會到數學的基礎性和重要性,激發學生求知的熱情
教師按照學生的認知規律有層次、有步驟地引導學生分析解決問題
活動3
從函數的觀點進一步分析規律
(3)用反比例函數的性質解釋:開啟桶蓋時用長的改錐還是短的改錐?在我們使用撬棍時,為什么動力臂越長就越省力?問題
(4)受條件限制,無法得知撬石頭時的阻力,小剛選擇了動力臂為1.2米的撬棍,用了500牛頓的力剛好撬動;小明身體瘦小,只有300牛頓的力量,他該選擇動力臂為多少的撬棍才能撬動這塊大石頭呢?
(5)地球重量的近似值為(即為阻力),假設阿基米德有500牛頓的力量,阻力臂為20xx千米,請你幫助阿基米德設計該用動力臂為多長的杠桿才能把地球撬動?利用反比例函數的變化規律解釋實際生活中一些問題深入挖掘動力臂與動力F又有怎樣的函數關系呢?待定系數法解決函數問題公元前3世紀,古希臘科學家阿基米德發現了著名的“杠桿定律”:
阻力阻力臂=動力動力臂,他形象地說,“給我一個支點我可以把地球撬動”
從函數的角度深層次挖掘變量間的關系,在這一過程中學生逐漸建立運用運動變化的觀點解釋一些現象,實現從靜到動的轉變舉一反三,函數模型未變,但兩個量的角色發生變化,深入探究,體會其中的變與不變的函數思想激發學生學習興趣,培養科學探索精神
活動4
展示練習
市政府計劃建設一項水利工程,工程需要運送的土石方總量為米,某運輸公司承辦了該項工程運送土方的任務。
(1)運輸公司平均每天的工作量(單位:米3/天)與完成運送任務所需的時間(單位:天)之間具有怎樣的函數關系?
(2)這個運輸公司有100輛卡車,每天一共可運送土石方立方米,則公司完成全部運輸任務需要多長時間?
(3)當公司以問題(2)中的速度工作了40天后,由于工程進度的需要,剩下的所有運輸任務必須在50天內完成,公司至少需要再增加多少輛卡車才能按時完成任務?教師展示練習,學生認真審題、思考學生認真審題后自主探究學生建立了反比例函數關系后求值學生相互討論,協作解決問題(3),請學生代表匯報他們討論的結果,教師作適時、適當的引導和指導
提醒學生:應把較復雜的問題分解,將難點逐一擊破,從不同的角度利用不同的方法解決問題
通過鞏固練習,讓學生進一步加深對反比例函數的運用和理解,更深層次體會建立反比例模型解決實際問題的思想,鞏固和提高所學知識
給學生足夠的時間和空間,給他們創造展示他們能力和所學知識的機會可從不同角度入手,培養學生從多角度審視、解決問題的能力
活動6
歸納、總結
作業:教科書習題17.2第6題
教師引導學生回憶、總結,教師予以補充
通過小結,使學生把所學知識進一步內化、系統化
《反比例》教案2
教學目標:
1、通過感知生活中的事例,理解并掌握反比例的含義,經初步判斷兩種相關聯的量是否成反比例
2、培養學生的邏輯思維能力
3、感知生活中的數學知識
重點難點
1、通過具體問題認識反比例的量。
2、掌握成反比例的量的變化規律及其 特征
教學難點:
認識反比例,能根據反比例的意義判斷兩個相關聯的量是不是成反比例。
教學過程:
一、課前預習
預習24---26頁內容
1、什么是成反比例的量?你是怎么理解的?
2、情境一中的兩個表中量變化關系相同嗎?
3、三個情境中的兩個量哪些是成反比例的量?為什么?
二、展示與交流
利用反義詞來導入今天研究的課題。今天研究兩種量成反比例關系的變化規律
情境(一)
認識加法表中和是12的直線及乘法表中積是12的曲線。
引導學生發現規律:加法表中和是12,一個加數隨另一個加數的變化而變化;乘法表中積是12,一個乘數隨另一個乘數的變化而變化。
情境(二)
讓學生把汽車行駛的速度和時間的表填完整,當速度發生變化時,時間怎樣變化?每
兩個相對應的數的乘積各是多少?你有什么發現?獨立觀察,思考
同桌交流,用自己的語言表達
寫出關系式:速度×時間=路程(一定)
觀察思考并用自己的語言描述變化關系乘積(路程)一定
情境(三)
把杯數和每杯果汁量的表填完整,當杯數發生變化時,每杯果汁量怎樣變化?每兩個相對應的數的乘積各是多少?你有什么發現?用自己的語言描述變化關系
寫出關系式:每杯果汁量×杯數=果汗總量(一定)
5、以上兩個情境中有什么共同點?
反比例意義
引導小結:都有兩種相關聯通的量,其中一種量變化,另一種量也隨著變化,并且這兩種量中相對應的兩個數的乘積是一定的。這兩種量之間是反比例關系。
活動四:想一想
二、 反饋與檢測
1、判斷下面每題是否成反比例
(1)出油率一定,香油的質量與芝麻的質量。
(2)三角形的`面積一定,它的底與高。
(3)一個數和它的倒數。
(4)一捆100米電線,用去長度與剩下長度。
(5)圓柱體的體積一定,底面積和高。
(6)小林做10道數學題,已做的題和沒有做的題。
(7)長方形的長一定,面積和寬。
(8)平行四邊形面積一定,底和高。
2、教材“練一練”P33第1題。
3、教材“練一練”P33第2題。
4、找一找生活中成反比例的例子,并與同伴交流。
板書設計: 反比例
兩個相關聯的量,乘積一定,成反比例
關系式:X×Y=K(一定)
課后反思:
本課時教學設計特點:一是情景設置和幾個表格的設計,都注重從現實題材出發,讓學生感受到反比例在現實生活中的廣泛應用。二是通過讓學生自己去分類整理、自主探究、合作交流得出反比例的意義,有利于發展學生的數學思維。
《反比例》教案3
教學內容:P53~54、第4~13題,思考題,正、反比例應用題的練習。
教學目的:進一步掌握正、反比例的意義,能正確應用比例知識解答基本的`正、反比例應用題,并溝通不同解法之間的聯系,進一步提高學生判斷,分析和推理等思維能力。
教學過程:
一、基本訓練
P53第4題,口答并說明理由
二、基本題練習
1、做練習十第5題
2提問:按過去的算術解法,第(1)題要先求什么數量?第(2)題呢?
用比例的知識怎樣解答呢,請大家自己做一做。
評講:說一說是怎樣想的?
(板書:速度×時間=路程(一定)=反比例
=正比例
提問:正、反比例應用題解題過程有什么相同的地方?解題方法有什么不同?為什么?
3、練習:(略)
三、綜合練習
3、練習十第11題
啟發學生用幾種方法解答
4、做練習十第13題
(1)提問:這是一道什么應用題?可以怎樣列式解答?
(2)把樹苗總數看做單位“1”,成活棵數是94%,你還能用比例知識解答嗎?
四、講解思考題
引導:增加鉛以后,鉛與錫的比是5:3,有怎樣的關系式?
五、課堂:
通過本課的練習,你進一步明確了哪些內容?
六、作業:
第8、9、10題
七、課后作業:
第6、7、12題
《反比例》教案4
知識技能目標
1.理解反比例函數的圖象是雙曲線,利用描點法畫出反比例函數的圖象,說出它的性質;
2.利用反比例函數的圖象解決有關問題.
過程性目標
1.經歷對反比 例函數圖象的觀察、分析、討論、概括過程,會說出它的性質;
2.探索反比例函數的圖象的性質,體會用數 形結合思想解數學問題.
教學過程
一、創設情境
上節的練習中,我們畫出了問題1中函數 的圖象,發現它并不是直線.那么它是怎么樣的曲線呢?本節課,我們就來討論一般的反比例函數 (k是常數,k0)的圖象,探究它有什么性質.
二、探究歸納
1.畫出函數 的圖象.
分析 畫出函數圖象一般分 為列表、描點、連線三個步驟,在反比例函數中自變量x 0.
解 1.列表:這個函數中自變量x的取值范圍是不等于零的一切實數,列出x與y的對應值:
2.描點:用表里各組對應值作為點的坐標,在直角坐標系中描出在京各點點(-6,-1) 、(-3,-2)、(-2,-3)等.
3.連線:用平滑的 曲線將第一象限各點依次連起來,得到圖象的 第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支.這兩個分支合起來,就是反比例函數的圖象.
上述圖象,通常稱為雙曲線(hyperbola).
提問 這兩條曲線會與x軸、y軸相交嗎?為什么?
學生試一試:畫出反比例函數 的圖象(學生動手畫反比函數圖象,進一步掌握畫函數圖象的步驟).
學生討論、交流以下問題,并 將討論、交流的結果回答 問題.
1.這個函數的圖 象在哪兩個象限?和函數 的圖象 有什么不同?
2.反比例函數 (k0)的圖象在哪兩個象限內?由什么確定?
3.聯系一次函數的性質,你能否總結出反比例函數中隨著自變量x的增加,函數y將怎樣變化?有什么規律?
反比例函數 有下列性質:
(1)當k0時,函數的圖象在第一、三象限,在每個象限內,曲線從左向右下降,也就是在每個象限內y隨x的增加而減少;
(2)當k0時,函數的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加.
注 1.雙曲線的兩個分支與x軸和y軸沒有交點;
2.雙曲線的兩個分支關于原點成中心對稱.
以上兩點性質在上堂課的問題1和問題2中反映了怎樣的實際意義?
在問題1中反映了汽車比自行車的速 度快,小華乘汽車比騎自行車到鎮上的時間少.
在問題2中反映了在面積一定的情況下,飼養場的一邊越長,另一邊越小.
三、實踐應用
例1 若反比例函數 的圖象在第二、四象限,求m的值.
分析 由反比例函 數的定義可知: , 又由于圖象在二、四象限,所以m+10,由這兩個條件可解出m的值.
解 由題意, 得 解得 .
例2 已知反比例函數 (k0),當x0時,y隨x的增大而增大,求一次函數y=kx-k的圖象經過的象限.
分析 由于反比例函數 (k0 ),當x0時,y隨x的`增大而增大,因此k0,而一次函數y=kx-k中,k0,可知,圖象過二、四象限,又-k0,所以直線與y軸的交點在x軸的上方.
解 因為反比例函數 (k0),當x0時,y隨x的增大而增大,所以k0,所以一次函數y=kx-k的圖象經過一、二、四象限.
例3 已知反比例函數的圖象過點(1,-2).
(1)求這個函數的解析式,并畫出圖象;
(2)若點A(-5,m)在圖象上,則點A關于兩坐標軸和原點的對稱點是否還在圖象上?
分析 (1) 反比例函數的圖象過點(1,-2),即當x=1時,y=-2.由待定系數法可求出反比例函數解析式;再根據解析式,通過列表、描點、連線可畫出反比例函數的圖象;
(2)由點A在反比例函數的圖象上,易求出m的值,再驗證點A關于兩坐標軸和原點的對稱點是否在圖象上.
解 (1)設:反比例函數的解析式為: (k0).
而反比例函數的圖象過 點(1,-2),即當x=1時,y=-2.
所以 ,k=-2.
即反比例函數的解析式為: .
(2)點A(-5,m)在反比例函數 圖象上,所以 ,
點A的坐標為 .
點A關于x軸的對稱點 不在這個圖象上;
點A關于y軸的對稱點 不在這個圖象上;
點A關于原點的對稱點 在這個圖象上;
例4 已知函數 為反比例函數.
(1)求m的值;
(2)它的圖象在第幾象限內?在各象限內,y隨x的增大如何變化?
(3)當-3 時,求此函數的最大值和最小值.
解 (1)由反比例函數的定義可知: 解得,m=-2.
(2)因為-20,所以反比例函數的圖象在第二、四象限內,在各象限內,y隨x的增大而增大.
(3)因為在第個象限內,y隨x的增大而增大,
所以當x= 時,y最大值= ;
當x=-3時,y最小值= .
所以當-3 時,此函數的最大值為8,最小值為 .
例5 一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米.
(1)寫出用高表示長的函數關 系式;
(2)寫出自變量x的取值范圍;
( 3)畫出函數的圖象.
解 (1)因為100=5xy,所以 .
(2)x0.
(3)圖象如下:
說明 由于自變量x0,所以畫出的反比例函數的圖象只是位于第一象限內的一個分支.
四、交流反思
本節課學習了畫反比例函數的圖象和探討了反比例函數的性質.
1.反比例函數的圖象是雙曲線(hyperbola).
2.反比例函數有如下性質:
(1)當k0時,函數的圖象在第一、三象限,在每個象限內,曲線 從左向右下降,也就是在每個象限內y隨x的增加而減少;
(2)當k0時,函數的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加.
五、檢測反饋
1.在同一直角坐標系中畫出下列函數的圖象:
(1) ; (2) .
2.已知y是x的反比例函數,且當x=3時,y=8,求:
(1)y和x的函數關系式;
(2)當 時,y的值;
(3)當x取 何值時, ?
3.若反比例函數 的圖象在所在象限內,y隨x的增大而增大,求n的值.
4.已知反比例函數 經過點A(2,-m)和B(n,2n),求:
(1)m和n的值;
(2)若圖象上有兩點P1(x1,y1)和P2( x2,y2),且x1 x2,試比較y1和 y2的大小.
《反比例》教案5
教學目標
1.進一步理解正、反比例的意義,弄清它們的聯系和區別,掌握它們的變化規律.
2.使學生能正確判斷正、反比例.
教學重點
正、反比例的聯系和區別.
教學難點
能正確判斷正、反比例.
教學過程()
一、復習準備
判斷下面每題中兩種量成正比例還是成反比例.
1.單價一定,數量和總價.
2.路程一定,速度和時間.
3.正方形的邊長和它的面積.
4.時間一定,工效和工作總量.
二、新授教學
(一)出示課題
教師明確:我們已經初步學習了判斷兩種量是不是成正比例或反比例的關系,這節課通過比較弄清它們有什么相同點和不同點.
(二)教學例7(課件演示:正反比例的比較)
例7.觀察下面的兩個表,根據表分別填空.
表1
路程(千米)
5
10
25
50
100
時間(時)
1
2
5
10
20
在表1中相關聯的量是( )和( ),( )隨著( )變化,( )是一定的.因此,時間和路程成( )關系.
表2
速度(千米/時)
100
50
20
10
5
時間(時)
1
2
5
10
20
在表2中相關聯的量是( )和( ),( )隨著( )變化,( )是一定的.因此,時間和速度成( )關系.
1.分組討論、交流.
2.引導學生討論回答
(1)從表1中,怎樣知道速度是一定的?根據什么判斷速度和時間成正比例?
(2)從表2中,怎樣知道路程是一定的?根據什么判斷速度和時間成反比例?
3.引導學生總結路程、速度、時間三個量中每兩個量之間的關系.
速度×時間=路程
4.練習:判斷下面兩個量成什么比例.
(1)當速度一定時,路程和時間.
(2)當路程一定時,速度和時間.
(3)當時間一定時,路程和速度.
(三)比較正比例和反比例的關系.(繼續演示課件:正反比例的比較)
討論填表:正、反比例異同點
相同點:都有兩種相關聯的量,一種量隨著另一種量變化.
不同點:正比例是變化方向相同,一種量擴大或縮小,另一種量也擴大或縮小.相對應的每兩個數的比值(商)是一定的.反比例是變化方向相反,一種量擴大(縮小),另一種量反而縮小(擴大).相對應的每兩個數的積是一定的.
三、課堂小結
今天我們學習了哪些知識?你還有什么問題嗎?
四、鞏固練習
(一)判斷單價、數量和總價中一種量一定,另外兩種量成什么比例.為什么?
1.單價一定,數量和總價成( ).
2.總價一定,單價和數量成( ).
3.數量一定,總價和單價成( ).
(二)從汽車每次運貨噸數、運貨的次數和運貨的總噸數這三種量中,你能找出哪幾種比例關系?
五、課后作業
一個單位食堂每天用大米的數量、用的天數和大米的總量如下表.
表1
在表1中,相關聯的量是( )和( ),( )隨著( )變化,( )是一定的.因此,大米的總量和用的天數成( )關系.
表2
在表2中,相關聯的量是( )和( ),( )隨著( )變化,( )是一定的.因此,每天用的數量和用的天數成( )關系.
六、板書設計
正比例和反比例的`比較
相同點
1.都有兩種相關聯的量.
2.一種量隨著另一種量變化.
不同點
1.變化方向相同,一種量擴大或縮小,另一種量也擴大或縮小.
2.相對應的每兩個數的比值(商)是一定的.
1.變化方向相反,一種量擴大(縮小),另一種量反而縮小(擴大).
2.相對應的每兩個數的積是一定的.
探究活動
靈活判斷
活動目的
1.理解正反比例的意義.
2.能根據正反比例的意義,正確判斷兩種量是否成比例,成什么比例.
活動過程
1.教師出示思考題目:
(1)正方形的邊長和面積是否成比例?
(2)圓的面積和半徑是否成比例?
2.學生分小組討論.
3.學生分小組匯報討論結果.
4.師生共同小結并總結規律.
《反比例》教案6
一、背景分析
1.對教材的分析
本節課講述內容為北師大版教材九年級下冊第五章《反比例函數》的第二節,也這一章的重點。本節課是在理解反比例函數的意義和概念的基礎上,進一步熟悉其圖象和性質的過程。
本節課前一課時是在具體情境中領會反比例函數的意義和概念。函數的性質蘊涵于概念之中,對反比例函數性質的探索是對其內在規定性的的認識,也是對函數的概念的深化。同時,本節課也是下一節課《反比例函數的應用》的基礎,有了本節課的知識儲備,便于學生利用函數的觀點來處理問題和解釋問題。
傳統教材在內容和編寫意圖的比較:傳統教材里反比例函數的內容僅有一節,新教材里反比例函數的內容增加至一章。本節課中的作函數圖象的要求在新舊教材中并不一樣,舊教材對畫圖只是一帶而過,而新教材中讓學生反復作反比例函數的圖象,為下一步性質的探索打下良好的基礎。因為在學生進行函數的列表、描點作圖是活動中,就已經開始了對反比例函數性質的探索,而且通過對函數的三種表示方式的整和,逐步形成對函數概念的整體性認識。在舊教材中對反比例函數性質只是簡單觀察以后,由老師講解得到,但是在新教材中注重從操作、觀察、概括和交流這些數學活動中得到性質結論,從而逐步提高從函數圖象中獲取信息的能力。這也充分體現了重視獲取知識過程體驗的新課標的精神。
(1)教學目標:進一步熟悉作函數圖象的主要步驟,會作反比例函數的圖象;體會函數三種方式的相互轉換,對函數進行認識上的整和;逐步提高從函數圖象中獲取知識的能力,探索并掌握反比例函數的主要性質。
(2)重點:會作反比例函數的圖象;探索并掌握反比例函數的主要性質。
(3)難點:探索并掌握反比例函數的主要性質。
2、對學情的分析
九年級學生在前面學習了一次函數之后,對函數有了一定的認識,雖然他們在小學已經接觸了反比例,但都處于淺顯的、膚淺的知識表面,這對于他們理解反比例函數的圖象與性質沒有多大的幫助,但由于本節課采用z+z智能教育平臺進行教學,比較形象,便于學生接受。
二、教學過程
一、憶一憶
師:同學們還記得我們在學習一次函數時,是怎么作出一次函數圖象的嗎?一次函數的圖象是什么圖形?
生:作一次函數的圖象要采用以下幾個步驟:
(1)列表
(2)描點
(3)連線。
生乙:一次函數的圖象是一條直線。
師:大家說的很好,看來大家對過去的知識掌握的很牢固,那么同學們想一下,y=4/x是什么函數?
生:反比例函數。
師:你們能作出它的圖象嗎?
生:可以。
點評:復習舊知識,讓學生感受到新舊知識的聯系,并為后面的作反比例函數的圖象做好準備。
二、作圖象,試比較
師:請填寫電腦上的表格,并開始在坐標紙上描點,連線。
師:再按照上述方法作y=-4/x的圖象。
(學生動手操作)
師:下面大家分小組討論:對照你們所作出的兩個函數圖象,找出它們的相同點與不同點。
(學生討論交流,教師參與)
師:討論結束,下面哪個小組的同學說說你們的看法?
生1:它們的圖象都是由兩支曲線組成的。
生2:y=4/x的圖象的兩條曲線分布在一、三象限內,而y=-4/x的圖象的兩支曲線分布在二、四象限內。
點評:這里讓學生自己上臺操作,既培養了學生的動手能力,又可以激發學生學好數學的興趣。
三、細觀察,找規律
師:大家都說得很好,下面我們一起觀察反比例函數y=k/x的圖象,當k的發值生變化時,函數的圖象發生了怎樣的變化,并分小組討論有什么規律。
(展示圖象,讓學生觀察y=k/x的圖象,按下動畫按鈕,在運動中觀察值的變化與函數的圖象變化之間的.關系,并與同學們充分討論)
師:請同學們談一談剛才討論的結果。
生:我發現函數圖象的變化與k的值有關:當k>0時,在每一象限內,y隨x的增大而減小,當k<0時,在每一象限內,y隨x的增大而增大。
師:看來大家都經過了認真的思考和討論,對規律總結的也比較完整,下面我們一起把剛才兩個環節的知識點一起總結一下。
(1)反比例函數y=k/x的圖象是由兩支曲線所組成的。
(2)當k>0時,兩支曲線分別在一、三象限;當k<0時,兩支曲線分別在二、四象限。
(3)當k>0時,在每一象限內,y隨x的增大而減小,當k<0時,在每一象限內,y隨x的增大而增大。
師:如果我們將反比例函數的圖象繞原點旋轉180后,你會發現什么現象?這說明了什么問題?
(由學生在電腦上進行操作)
生:我發現旋轉后的圖象與原圖象完全重合了,這說明反比例函數的圖象是一個中心對稱圖形。
師:大家做得很好。那么,如果我們在圖象上任取a、b兩點,經過這兩點分別作軸、軸的垂線,與坐標軸圍成的矩形面積分別為s1、s2,觀察兩個矩形面積的變化情況,并找出其中的變化規律。
題目:
(1)拖動k,使k變化,觀察k不斷變化過程中,矩形面積的變化情況,討論得出結論。
(2)拖動函數上的點,觀察矩形面積的變化情況,討論得出結論。
生:我們發現,在同一個反比例函數中,不管k值怎么變化,矩形的面積始終不變。
師:大家的觀察很仔細,總結得也很正確。
點評:在這個環節中,既讓學生動手操作,又讓他們分組交流,這樣既培養了他們的動手能力,又增強了他們的團結合作的意識。結論主要有學生來發現,體現了新課程理論的精神。
四、用規律,練一練
1、課本137頁隨堂練習1
生:第一幅圖是y=-2/x的圖象,因為在這里的k<0,雙曲線應在第二、四象限。
2、下列函數中,其圖象唯一、三象限的有哪幾個?在其圖象所在象限內,的值隨的增大而增大的有哪幾個?
(1)y=1/(2x)
(2)y=0.3/x
(3)y=10/x
(4)y=-7/(100x)
生:其中(1)(2)(3)的圖象在一、三象限;(4)的圖象在每一象限內,y隨x的增大而增大。
五、想一想,談收獲
師:通過今天的學習,你有什么收獲?
生甲:我今天知道了怎樣畫反比例函數的圖象。
生乙:我今天知道了反比例函數的圖象是由兩支曲線所組成的。
生丙:我還懂得了:當k>0時,圖象分布在一、三象限,在每一個象限內,y隨x的增大而減小;當k<0時,圖象分布在二、四象限,在每一個象限內,y隨x的增大而增大
生丁:我還能用反比例函數的相關性質解題。
師:看來大家今天學到了不少知識,只要大家能保持這種對數學的熱情和勇于挑戰的精神,在數學上一定會有所收獲的。
總評:本節課很好的反映了新課程的一些理念,首先,就是將數學教學與多媒體教學進行了很好的整合,尤其是采用了z+z智能教育平臺進行教學,在本節課從進入課堂到結束,始終有多媒體教學的參與,如在講解反比例函數的性質時運用多媒體展示可以給學生以直觀的感受,并給學生留下深刻的印象,教師也能熟練地操作電腦,可以看出教師扎實的基本功。其次,在本節課的教學中,教師將學習的主動權交給學生,課堂始終在學生自主探索、合作交流的氣氛中進行,如在得出反比例函數的性質時,就在小組內進行了廣泛交流,由學生自己去探索,去發現新知識,這樣可以激發學生求知的欲望,達到事半功倍的目的。同時教師也主動的參與進去,把自己也當成了教室里的一員,真正體現了新課程的理念。
教學反思:
本節課由于在課前進行了大量的準備工作,包括對教材的鉆研、教學內容的設計、多媒體課件的制作、學生學情的了解,因此在教學中比較順利,對重難點內容也有效的進行了突破,尤其是電腦的引入,極大的調動了學生的學習積極性。學生由于成了課堂的主人,所以在課堂上保持了高漲的熱情,因此這堂課的效果也較好。
《反比例》教案7
教學目標
(一)教學知識點
1.從現實情境和已有的知識經驗出發,討論兩個變量之間的相似關系,加深對函數概念的理解.
2.經歷抽象反比例函數概念的過程,領會反比例函數的意義,理解反比例函數的概念.
(二)能力訓練要求
結合具體情境體會反比例函數的意義,能根據已知條件確定反比例函數表達式.
(三)情感與價值觀要求
結合實例引導學生了解所討論的函數的表達形式,形成反比例函數概念的具體形象,是從感性認識到理性認識的轉化過程,發展學生的思維;同時體驗數學活動與人類生活的密切聯系及對人類歷史發展的作用.
教學重點
經歷抽象反比例函數概念的過程,領會反比例函數的意義,理解反比例函數的概念.
教學難點
領會反比例函數的意義,理解反比例函數的概念.
教學方法
教師引導學生進行歸納.
教具準備
投影片兩張
第一張:(記作5.1A)
第二張:(記作5.1B)
教學過程
Ⅰ.創設問題情境,引入新課
[師]我們在前面學過一次函數和正比例函數,知道一次函數的表達式為y=kx+b.其中k,b為常數且k≠0,正比例函數的表達式為y=kx,其中k為不為零的常數.但是在現實生活中,并不是只有這兩種類型的表達式.如從A地到B地的路程為1200km,某人開車要從A地到B地,汽車的速度v(km/h)和時間t(h)之間的關系式為vt=1200,則t= 中t和v之間的關系式肯定不是正比例函數和一次函數的關系式,那么它們之間的關系式究竟是什么關系式呢?這就是本節課我們要揭開的奧秘.
Ⅱ.新課講解
[師]我們今天要學習的是反比例函數,它是函數中的一種,首先我們先來回憶一下什么叫函數?
1.復習函數的定義
[師]大家還記得函數的定義嗎?
[生]記得.
在某變化過程中有兩個變量x,y.若給定其中一個變量x的值,y都有唯一確定的值與它對應,則稱y是x的函數.
[師]大家能舉出實例嗎?
[生]可以.
例如購買單價是0.4元的鉛筆,總金額y(元)與鉛筆數n(個)的關系是y=0.4n.這是一個正比例函數.
等腰三角形的頂角的度數y與底角的度數x的關系為y=180-2x,y是x的一次函數.
[師]很好,我們復習了函數的定義以及正比例函數和一次函數的表達式以后,再來看下面實際問題中的變量之間是否存在函數關系,若是函數關系,那么是否為正比例或一次函數關系式.
2.經歷抽象反比例函數概念的過程,并能類推歸納出反比例函數的表達式.
[師]請看下面的問題.
電流I,電阻R,電壓U之間滿足關系式U=IR,當U=220V時.
(1)你能用含有R的代數式表示I嗎?
(2)利用寫出的關系式完成下表:
R/Ω20406080100
I/A
當R越來越大時,I怎樣變化?當R越來越小呢?
(3)變量I是R的函數嗎?為什么?
請大家交流后回答.
[生](1)能用含有R的代數式表示I.
由IR=220,得I= .
(2)利用上面的關系式可知,從左到右依次填11,5.5,3.67,2.75,2.2.
從表格中的數據可知,當電阻R越來越大時,電流I越來越小;當R越來越小時,I越來越大.
(3)變量I是R的函數.
由IR=220得I= .當給定一個R的值時,相應地就確定了一個I值,因此I是R的函數.
[師]這位同學回答的非常精彩,下面大家再思考一個問題.
舞臺燈光為什么在很短的時間內將陽光燦爛的晴日變成濃云密布的陰天,或由黑夜變成白晝的?請大家互相交流后回答.
[生]根據I= ,當R變大時,I變小,燈光較暗;當R變小時,I變大,燈光較亮.所以通過改變電阻R的大小來控制電流I的變化,就可以在很短的時間內將陽光燦爛的晴日變成濃云密布的陰天,或由黑夜變成白晝.
投影片:(5.1A)
京滬高速公路全長約為1262km,汽車沿京滬高速公路從上海駛往北京,汽車行完全程所需的時間t(h)與行駛的平均速度v(km/h)之間有怎樣的關系?變量t是v的函數嗎?為什么?
[師]經過剛才的例題講解,大家可以獨立完成此題.如有困難再進行交流.
[生]由路程等于速度乘以時間可知1262=vt,則有t= .當給定一個v的值時,相應地就確定了一個t值,根據函數的定義可知t是v的函數.
[師]從上面的兩個例題得出關系式
I= 和t= .
它們是函數嗎?它們是正比例函數嗎?是一次函數嗎?
[生]因為給定一個R的值,相應地就確定了一個I的值,所以I是R的函數;同理可知t是v的函數.但是從表達式來看,它們既不是正比例函數,也不是一次函數.
[師]我們知道正比例函數的關系式為y=kx(k≠0),一次函數的關系式為y=kx+b(k,b為常數且k≠0).大家能否根據兩個例題歸納出這一類函數的`表達式呢?
[生]可以.由I= 與t= 可知關系式為y= (k為常數且k≠0).
[師]很好.
一般地,如果兩個變量x、y之間的關系可以表示成y= (k為常數,k≠0)的形式,那么稱y是x的反比例函數.
從y= 中可知x作為分母,所以x不能為零.
3.做一做
投影片(5.1B)
1.一個矩形的面積為20cm2,相鄰的兩條邊長分別為x cm和y cm,那么變量y是變量x的函數嗎?是反比例函數嗎?為什么?
2.某村有耕地346.2公頃,人口數量n逐年發生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數n的函數嗎?是反比例函數嗎?為什么?
3.y是x的反比例函數,下表給出了x與y的一些值:
x-2-1
13
y
2-1
(1)寫出這個反比例函數的表達式;
(2)根據函數表達式完成上表.
[生]由面積等于長乘以寬可得xy=20.則有y= .變量y是變量x的函數.因為給定一個x的值,相應地就確定了一個y的值,根據函數的定義可知變量y是變量x的函數.再根據反比例函數的表達式可知y是x的反比例函數.
[生]根據人均占有耕地面積等于總耕地面積除以總人數得m= .給定一個n的值,就相應地確定了一個m的值,因此m是n的函數,又m= 符合反比例函數的形式,所以是反比例函數.
[師]在做第3題之前,我們先回憶一下如何求正比例函數和一次函數的表達式.在y=kx中,要確定關系式的關鍵是求得非零常數k的值,因此需要一個條件即可;在一次函數y=kx+b中,要確定關系式實際上是要求得b和k的值,有兩個待定系數因此需要兩個條件.同理,在求反比例函數的表達式時,實際上是要確定k的值.因此只需要一個條件即可,也就是要有一組x與y的值確定k的值.所以要從表格中進行觀察.由x=-1,y=2確定k的值.然后再根據求出的表達式分別計算x或y的值.
[生]設反比例函數的表達式為
y= .
(1)當x=-1時,y=2;
∴k=-2.
∴表達式為y=- .
(2)當x=-2時,y=1.
當x=- 時,y=4;
當x= 時,y=-4;
當x=1時,y=-2.
當x=3時,y=- ;
當y= 時,x=-3;
當y=-1時,x=2.
因此表格中從左到右應填
-3,1,4,-4,-2,2,- .
Ⅲ.課堂練習
隨堂練習(P131)
Ⅳ.課時小結
本節課我們學習了反比例函數的定義,并歸納總結出反比例函數的表達式為y= (k為常數,k≠0),自變量x不能為零.還能根據定義和表達式判斷某兩個變量之間的關系是否是函數,是什么函數.
Ⅴ.課后作業
習題5.1
Ⅵ.活動與探究
已知y-1與 成反比例,且當x=1時,y=4,求y與x的函數表達式,并判斷是哪類函數?
分析:由y與x成反比例可知y= ,得y-1與 成反比例的關系式為y-1= =k(x+2),由x=1、y=4確定k的值.從而求出表達式.
解:由題意可知y-1= =k(x+2).
當x=1時,y=4.
所以3k=4-1,
k=1.
即表達式為y-1=x+2,
y=x+3.
由上可知y是x的一次函數.
板書設計
《反比例》教案8
目標
1.結合具體的情境,體會生活中存在著大量相關聯的變量;明白一個量變化,另一個量也會隨著發生變化的特點。
2.讓學生通過觀察圖表等活動,嘗試著用自己的語言描述兩個變量之間的關系。
3.培養學生認真觀察的良好習慣,感受生活中處處有數學。重點找出變量并體會量之間存在著的關系。重點突破引導學生通過觀察、分析,尋找表格、圖象中變量之間的變化情況,掌握變量之間的關系。難點用語言描述兩個變量之間的關系。難點突破掌握了變量之間的關系后,引導學生用合適的語言把這種關系表達出來。教法主要有講解法、談話法、引導發現法、以教促學法。學法通過動手實踐、自主探究和合作交流的學習方式,理解具體情境中的各種變量之間的關系。
課前準備教師課件。學生調查自己從出生到現在的身高和體重變化情況。過程引入
1.同學們,你們從出生到現在,身高是如何變化的?先估計一下,再說一說?(引導學生交流與討論。)
2.我們不但只有身高在變化,我們的體重也在變化,你們知道自己從出生到現在的體重變化情況嗎?請個別學生說說自己出生到現在體重的變化情況。
3.我們知道從出生到現在,身高和體重都在隨著年齡的增長而增長,也就是說身高和體重都是兩個變化的量。今天這節課,我們就來認識變化的量。(板書課題:變化的量)
【設計意圖】
通過讓學生課前調查自己身高和體重的變化,引出課題,讓學生感受到生活中存在著許多變化的量,引起學生探究這些變化的量的欲望。
探新(一)探究妙想的體重變化情況。
過渡:同學們,剛才我們調查了幾名同學從出生到現在的身高和體重變化情況,淘氣和笑笑也在調查妙想的體重變化情況。他們還畫出了圖表,我們一起去看看吧!課件出示教材第39頁妙想體重變化情況的表格和圖。
1.請同學們仔細觀察表格和圖,看看表格和圖中都有哪些數學信息?(學生認真觀察,尋找數學信息。)
2.提問:通過觀察,你發現哪些量在發生變化?引導學生回答:妙想的年齡和體重在變化。
3.追問:妙想6周歲前的體重是如何隨年齡的增長而變化的?
學生回答預測:
生A:妙想的體重隨年齡的增長,越來越重。
生B:我發現妙想從出生到2周歲這段時間體重增長最快。
4.質疑:人的體重是不是隨著年齡的增長而一直增長?
學生根據生活經驗,可能會回答:這是不一定的,因為有的人的體重增長到一定時候,就停止增長了。老年人隨年齡的增長,體重還會減少。
小結:人的年齡和體重是互相關聯的兩個量,人的體重隨年齡的變化而變化。
(二)探究駱駝的體溫變化情況。
過渡:剛才,我們通過觀察圖表,分析了妙想從出生到6周歲前的體重變化情況。下面,我們繼續來探究駱駝的體溫變化情況,大家請看大屏幕。課件出示駱駝體溫變化情況統計圖,要求學生觀察。
1.提問:表中橫軸和縱軸分別表示什么?引導學生回答:縱軸表示溫度,橫軸表示時間。
2.追問:圖中彎曲的線表示的是什么?引導學生回答:彎曲的線表示的是駱駝的體溫在48小時內的變化情況。
3.再追問:同學們,通過觀察,你們發現了哪些量在變化?引導學生觀察后回答:溫度和時間在變化。
4.請學生結合圖表下面提出的問題,分析每個問題的答案。
(1)學生觀察分析,教師巡視。
(2)小組交流,引導學生把自己找到的答案與同學進行交流,在小組內形成統一的意見,反饋匯報。
5.提問:通過剛才的分析,你們發現駱駝體溫的變化有什么規律?引導學生回答:駱駝的體溫隨著時間的變化而變化,而且變化的周期是一天。
(三)尋找生活中變化的量。
過渡:同學們通過探究,了解了年齡和體重、溫度和時間這些變化的量。其實在生活中,像這樣的例子還有很多,你能找出一個量隨著另一個量的變化而變化的例子嗎?先想一想,再和同學互相交流。
1.學生思考回憶后,把找到的`相關例子和同學交流。
2.教師指名說一說自己發現的生活中一個量隨另一個量變化而變化的例子。匯報時,學生只要說的是兩個相關聯的變化的量,教師都應予以肯定。
【設計意圖】充分利用教材的情境圖,讓學生在觀察、分析、交流中體會到生活中存在著大量相關聯的變量,我們可以利用圖表等形式表示變量之間的關系。
鞏固1.完成教材第40頁“練一練”第1題。
(1)學生讀題,明確題目要求。
(2)分析當底面積一定時,圓柱的體積與高之間的關系。
(3)指名匯報。學生回答預測:當圓柱的底面積等于10c㎡時,圓柱的體積隨圓柱高的變化而變化,體積隨高的增加而增加。
2.完成教材第40頁“練一練”第2題。
(1)學生獨立思考后,小組交流。
(2)全班匯報,集體訂正。學生匯報預測:
(1)轉動過程中,到達的最高點是18米,最低點是3米。
(2)轉動第一圈的過程中,0至6分時高度在增加,6至12分時,高度在降低。
(3)到達最高點后,下一次再到達最高點需要經過12分鐘。
3.完成教材第40頁“練一練”第3題。
(1)學生獨立思考,分析數量關系。
(2)引導學生嘗試用字母表示出數量關系。
(3)小組交流后反饋匯報。引導學生回答:t=n÷7+3。
【設計意圖】數學知識的鞏固與深化,不僅靠感知,還要輔以靈活、有層次的練習。通過鞏固拓展練習,不但使學生所學的知識進一步深化,而且使學生的思維在練習中得到發展,創新素質得到錘煉。小結通過本節課的學習,你有哪些收獲?通過本節課的學習,我們了解了很多變化的量,如:年齡和體重是兩個變化的量,時間和駱駝的體溫是兩個變化的量。反思本節課主要是感受變量之間的關系。
為了遵循“學習不是由教師向學生傳遞知識,而是學生自己建構知識的過程”這一理念,本節教學主要從以下幾個方面來探索:
(1)以觀察分析為主要手段,引導學生通過觀察、分析,發現相關聯的兩種量之間的關系,從而體現學生學習的自主性,提高學生的觀察能力;
(2)充分利用學生原有的知識以驗,教學中,把學生原有的知識、經驗作為新知的生長點,引導學生從原有知識、經驗中“生長”出新的知識、經驗;如讓學生在理解相關聯的兩個變量的基礎上,從生活中尋找相關聯的量,激發學生對原有知識經驗的回憶;
(3)加強學生之間的交流互動,在教學中,讓學生在觀察分析的基礎上,通過小組交流、同伴交流等形式,互相合作,共同獲取知識。對于初次接觸函數知識的小學生來說,對量的理解還有一定的難度,教學中雖然作了努力,但有些學困生仍不能透徹地理解量的含義,這是本節課教學中的失誤,在今后的教學中有待改進。
板書變化的量兩個變量:
1.年齡和體重的變化;
2.時間和駱駝體溫的變化。
《反比例》教案9
教學目標
1.使學生理解反比例的意義,掌握成反比例的變化規律,并能初步運用,反比例的意義(參考教案二)。
2.能正確判斷成正反比例的量,為解答正反比例應用題打下基礎。
教學重點和難點
理解反比例的意義,掌握兩種相關聯的量變化規律。
教學過程設計
(一)復習準備
1.(出示幻燈)
一種練習本的數量和總頁數如下表:
師:請回答下列問題。
(1)表中哪個量是固定不變的量?
(2)哪兩種量是相關聯的量?它們的變化規律是怎樣的`?
(3)表內相關聯的兩種量成正比例嗎?為什么?
2.填空。(小黑板(一))
兩種相關聯的量,一種量變化另一種量也隨著變化,如果這兩種量中________,這兩種量叫做成________的量,它們的關系叫做________關系。
3.判斷下面各題中兩種量是否成正比例。
(1)文具盒的單價一定,買文具盒的個數和總價( )。
(2)水稻產量一定,水稻的種植面積和總產量( )。
(3)一堆貨物一定,運出的和剩下的( )。
(4)汽車行駛的速度一定,行駛的時間和路程( )。
(5)比值一定,比的前項和后項( )。
可選其中一、二題,說一說為什么?
師:通過剛才的復習,我們對正比例的意義理解得很好。你們想一想,有正比例就一定有反比例。什么時候成反比例呢?今天我們就學習反比例的意義。(板書課題:反比例的意義)
(二)學習新課
1.出示例4。(小黑板(二))
例4 華豐機械廠加工一批零件,每小時加工的數量和加工的時間如下表:
(1)分析表,回答下列問題。(幻燈出示)
①表中有哪種量?
②兩種相關聯的量是如何變化的?
③你能說出它們的關系式嗎?
④相對應的每兩個數的乘積各是多少?
⑤哪種量是固定不變的?
師:請同學們打開書自學,然后分組討論以上問題。(老師巡視、指導。)
(2)同學們發言。
《反比例》教案10
教學內容:教科書第22—24頁反比例的意義,練習六的第4—6題。
教學目的:
1.使學生理解反比例的意義.能夠正確判斷兩種量是不是成反比例。
2.使學生進一步認識事物之間的相互聯系和發展變化規律。
3.初步滲透函數思想。
教具準備:投影儀、投影片、小黑板。
教學過程():
一、復習
1.讓學生說說什么是成正比例的量:
2.用投影片出示下面的題:
(1)下面各題中哪兩種量成正比例?為什么?
①筆記本單價一定,數量和總價:
⑨汽車行駛速度一定.行駛的路程和時間。
②工作效率一定.’工作時間和工作總量。
①一袋大米的重量一定.吃了的和剩下的。
(2)說出每小時加工零件數、加工時間和加工零件總數三者間的數量關系。在什么條件下,其中兩種量成正比例?
二、導入新課
教師:如果加工零件總數一定。每小時加工數和加工時間會成什么樣的變化.關系怎樣?就是我們這節課要學習的內容。
三、新課
1.教學例4。
出示例4;豐機械廠加工一批機器零件。每小時加工的數量和所需的加工時間如下表。
讓學生觀察這個表,然后每四人一組討論下面的問題:
(1)表中有哪兩種量?
(2)所需的.加工時間怎樣隨著每小時加工的個數變化?
(3)每兩個相對應的數的乘積各是多少?
學生分組討論后集中發言。然后每個小組選代表回答上面的問題。隨著學生的回答,教師板書如下:每小時加工數加工時間
10 × 60 =600。
30 × 20 =600。
40 × 15 =600,
“這個積600。實際上是什么?”在“加工時間”后面板書:零件總數
“積一定,就說明零件總數怎樣?”在零件總數后面板書:(一定)
“每小時加工數、加工時間和零件總數這三種量有什么關系呢?”
學生回答后,教師小結:通過剛才的觀察分析.我門可以看出。表中每小時加工零件數和所需的加工時間是兩種相關聯的量。所需的加工時間是隨著每小時加工數量的變化而變化的,每小時加工的數量擴大。所需的加工時間反而縮小3每小時加工的數量縮小,所需的加工的時間反而擴大。它們擴大、縮小的規律是:每小時加工的零件的數量和所需的加工時間的積都等于600,即總是一定的:我們把這種關系寫成式子就是:每小時加工數×加工的時間=零件總數(一定)。
2.教學例5。
用小黑板出示例5用600頁紙裝訂成同樣的練習本,每本的頁數和裝訂的本數有什么關系呢?請你先填寫下表。
(1)理解題意,填寫裝訂本數。
“誰能說說表中第一欄數據的意思?”(用600頁紙裝訂練習本,如果每本練習本15頁,可以裝訂40本。)
“這40本是怎么計算出來的?”(用600÷15)
“如果每本練習本是20頁,你能計算出可以裝訂多少這樣的練習本嗎?如果每本是25頁呢?……請你把計算出來的本數填在教科書第23頁的表中。”教師把學生報出的數據填在黑板上的表中。
(2)觀察分析表中兩種量的變化規律。
讓學生觀察上表,回答下面的問題:“表中有哪兩種量?”(板書:每本的頁數裝訂的本數)
“裝訂的本數是怎樣隨著每本的頁數變化的?”隨著學生的回答,板書如下:每本的頁數 裝訂的本數
15 40
20 30
25 24
一’然后讓學生判斷下面每題中的兩種量成不成比例,是成正比例還是成反比例。
1,單價一定.數量和總價。
2,路程一定,速度和時間。。
3,正方形的邊長和它的面積。
1.時間一定,工效和工作總量。
二、導入新課
教師:我們在前兩節課分別學習了成正比例的量和成反比例的量。初步學會判斷
兩種量是不是成正比例或反比例的關系,發現有些同學判斷時還不夠準確。這節課我
們要通過比較弄清成正比例的量和成反比例的量有什么相同點和不同點。
板書課題:正比例和反比例的比較
三、新課
1.教學例7。
出示例7的兩個表:
表1 表2
讓學生觀察上面的兩個表,然后根據兩個表所提的問題,分別在教科書上填空。訂正時。指名說出自己是怎樣填的,教師板書:
在表l中: 在表2中:
相關聯的量是路程和時間. 路程隨著相關聯的量是速度 路程隨 時間變化,速度是 和時間,速度隨著時間變化
一定。因此,路程和時間 ,路程是一定的。因此,速
成正比例關系。 度和時間成反比例關系
然后提問:
(1)從表1,你怎樣發現速度是一定的?你根據什么判斷路程和時間成正比例/
(2)從表2,你怎樣發現路程是一定的?你根據什么判斷速度和時間成反比例?
教師:路程、速度和時間這三個量中每兩個量之間有什么樣的比例關系?
板書:速度×時間=路程
=速度 =速度
教師:當速度一·定時,路程和時間成什么比例關系?
教師:當路程一定時,速度和時間成什么比例關系?
教師:當時間一定時。路程和速度成什么比例關系?
2.比較正比例和反比例關系。
教師:結合上面兩個例子,比較——下正比例關系和反比例關系,你能寫出它們的相同點和不同點嗎?試試看。組織討論,教師歸納并板書:
四、鞏固練習
1.做教科書第28頁“做一做”中的題目。
讓學生自己填,并說一說為什么。
2.做練習七的第1—2題。
教師巡視,個別輔導,最后訂正。
五、小結
教師:請同學們說說正比例和反比例關系有什么相同點和不同點?
《反比例》教案11
教學內容
根據教科書自選內容。
教學目標
1.通過練習,使學生進一步理解并掌握反比例的意義,會正確判斷兩種相關聯的量是否成反比例,并能解決簡單的實際問題。
2.進一步培養學生分析問題、解決問題的能力。
3.結合實例,培養學生仔細分析、主動探索的良好的學習習慣。
教學重點
正確理解反比例的意義,并能作出正確的判斷。
教學難點
能根據反比例的意義,解決相關的實際問題。
教學過程
一、學習準備,揭示課題
1.談話引入
上節課我們學了什么?今天,我們進行練習(板書:反比例練習)。通過練習,達到以下兩個目標:①進一步理解反比例的意義,并能正確判斷兩個相關聯的量是否成反比例;②能根據反比例的意義,解決實際問題。
2.你知道哪些有關反比例的知識
板書:意義、字母表示:xy=k(一定)
二、基本練習
1.觀察下面三個表
(1)表1中的兩種量是怎樣變化的?哪種量是一定的?每天燒煤量和燒的天數成什么比例?為什么?
(2)表2中的兩種量是怎樣變化的?哪種量是一定的?用去的`煤和剩下煤的噸數成比例嗎?為什么?
(3)表3中的兩種量是怎樣變化的?哪種量是一定的?平行四邊形的底和平行四邊形的高成什么比例?為什么?
2.判斷
判斷下面各題中的兩種量是否成比例。如果成比例,成什么比例?
(1)平行四邊形的面積一定,它的底和高。
(2)一筐桃平均分給猴子,猴子的只數和每只猴子分的個數。
(3)報紙的單價一定,訂閱的份數與總價。
(4)小剛跳高的高度和他的身高。
(5)C=4a
三、解決問題
1.鞏固練習
一輛汽車從甲地開往乙地,每時行70 km,5時到達。如果要4時到達,每時需要行駛多少千米?
(1)學生讀題,理解題意。
(2)會列式解答嗎?試試看。還可以怎么解?(引導學生用反比例知識解答)
2.用比例知識解答
(1)同學們做廣播操,每行站20人,正好站18行。如果每行站24人,可以站多少行?
(2)用同樣的磚鋪地,鋪18 m2要用618塊磚。如果鋪24 m2,要用多少塊磚?
學生獨立分析、解答,教師巡視,并加以指點。
根據這兩道題組織學生討論正比例關系和反比例關系的相同點和不同點。
討論后全班交流,教師引導學生歸納并板書。
相同點:都有兩種相關聯的量,一種量變化,另一種量也隨著變化。
不同點:正比例是相對應的兩個數的比值(商)一定。反比例是相對應的兩個數的積一定。
四、變式提高練習
按規律填數。
(1)(1,36),(2,18),(3,12),(4,),(5,)
(2)15,210,315,4(),()25
(3)81,27,(),3,1,()
五、全課小結
同學們,今天我們學習了什么?你有什么收獲?還有哪些疑問?
六、拓展練習
根據自己的生活經驗,各構建一道生活中用正比例和反比例解決的問題,再解決,并與同學交流你構建問題的思考方法和解決問題的方法。
《反比例》教案12
設計說明
“反比例”是在學生學習了“比和比例”和“正比例”的基礎上進行教學的。本著“學生是學習的主體”的理念,在本節課的教學中,最大限度地為學生提供了自主探究的機會。
1.借助定義、實例,滲透函數思想。
教學伊始,借助正比例的意義和生活實例,使學生進一步體會函數思想,充分理解成正比例關系的兩種量的比值不變的特點,為學生探究成反比例關系的兩種量之間的關系以及理解反比例的意義和特點奠定良好的基礎。
2.借助具體情境,在觀察、討論中發現規律。
教學中,通過具體情境,引導學生在觀察、討論中發現“把相同體積的水倒入底面積不同的杯子中,水面的高度不同”及“杯子的`底面積×水的高度=水的體積”這一規律,使學生通過自己的努力,歸納、概括出反比例的意義及特點。
3.借助已有的學習經驗總結反比例關系式。
因為正、反比例體現的都是兩種相關聯的量之間的關系,且正比例關系表達式學生已經掌握,所以在總結反比例關系表達式時,教師要引導學生根據已有的經驗自己總結出反比例關系表達式,體驗成功的喜悅。
課前準備
教師準備PPT課件
學生準備玻璃杯直尺水實驗記錄單
教學過程
⊙復習引入
1.復習。
課件出示:一個圓柱形水箱,底面積是0.78平方米,高是1.2米,這個水箱能裝水多少立方米?
(1)引導學生獨立解決問題。
(2)提問:你是根據什么公式進行計算的?
預設
生:圓柱的體積=底面積×高。
(3)師追問:圓柱的體積、底面積和高之間還有怎樣的數量關系呢?在什么情況下其中的兩種量成正比例關系?
預設
生1:底面積=圓柱的體積÷高,高=圓柱的體積÷底面積。
生2:如果底面積一定,圓柱的體積與高就成正比例;如果高一定,圓柱的體積與底面積就成正比例。
2.引入課題。
如果圓柱的體積一定,那么底面積與高又成怎樣的關系呢?這就是本節課我們要學習的內容。(板書課題:反比例)
設計意圖:通過復習有關圓柱的體積問題以及列舉圓柱的體積、底面積和高之間的關系,在培養學生思維完整性的同時,為新知的學習作鋪墊。
⊙探究新知
1.在具體情境中初步感知成反比例關系的量。
(1)課件出示教材47頁例2,引導學生結合問題進行觀察。
師:觀察情境圖,理解圖意后,觀察下表,先一行一行地觀察,再一列一列地觀察,并思考下面的問題。
杯子的底面積與水的高度的變化情況如下表。
杯子的底面積/cm2
《反比例》教案13
教學內容:P50第3——8題,正反比例關系練習。
教學目的:進一步認識正、反比例關系的意義,能根據正、反比例關系的意義正確判斷,培養學生分析推理和判斷能力。
教學過程:
一、揭示課題
二、基本知識練習
1、正、反比例意義
提問:什么叫正比例關系,什么叫反比例關系?用字母式子怎樣表示正、反比例的關系?判斷成正比例或反比例關系的`關鍵是什么?
2、練:950第4題。
先說出數量關系式,再判斷成什么比例?
三、綜合練習
1、練習:P50第5題
想一想:這三種數量之間有怎樣的關系式,你能找出哪幾種比例關系?
口答并說說怎樣想的。
2、做練習十二第6題、第7題
第7題評講時追問:在一個乘法關系式里,什么情況下某兩個數成反比例:什么情況一某兩個數或正比例?
3、做第8題
提問:從直線上看,支數擴大或縮小時,錢數分別怎樣變化?
四、延伸練習
下面題里的數量成什么關系?你能列出式子表示數量之間的相等關系嗎?
1、一輛汽車從甲地到乙地要行千米,每小時行50千米,4小時到達;如果每小時行80千米,2.5小時到達。
2、某工廠3小時織布1800米,照這樣計算,8小時織布X米。
五、課堂
通過這節課的練習,你進一步認識和掌握了哪些知識?
六、作業
《練習與測試》P25第五、六題。
《反比例》教案14
教學目的:通過混合練習,加深學生對正比例和反比例的意義的理解,提高判斷能力。
教學過程:
一、引入
教師:前面我們學習了正比例和反比例的意義.上節課我們又把它們進行了比較,你們會根據正比例和反比例的意義,比較熟練地判斷兩種相關聯的量是成正比例還是成反比例嗎?
二、課堂練習
1.分析、研究第3題。
讓學生先說出長方形的'長、寬、面積三個量中.其中一個量與另外兩個量的關系,教師板書出來:長寬=面積
= 長 =寬
提問:
當面積一定時,長和寬成什么比例關系?
當長一定時,面積和寬成什么比例關系?
當寬一定時,面積和長成什么比例關系?
教師:通過上面的分析,我們知道:要判斷三種相關聯的量在什么條件下組成哪種比例關系,我們可以先寫出它們中的一種量與另外兩種量的關系,再進行分析,。
2.第4題,讓學生仿照第3題的方法做。訂正后,教師板書如下:
每次運貨噸數運貨次數=運貨的總噸數(一定) 每次運貨噸數 與運貨次數 =運貨次數(一定) 成反比例關 系。
運貨的總噸 =每次運貨噸數(一定) 數與運貨次 數成正比例 關系
3.第5題,讓學生獨立做,教師巡視,注意個別輔導。
4.第6題,先讓學生自己判斷,然后指名回答,第(1)小題成反比例,第(2)、(4)、(6)小題成正比例,第(3)、(5)小題不成比例。
5.第7題,學生獨立解答后,選一題說說是怎樣解的。
6.學有余力的學生做第8題。
《反比例》教案15
教學內容
教科書第14~16頁的例4~例6以及相應的“做一做”,練習三的第4~7題.
教學目的
1.使學生通過具體問題認識成反比例的量,理解反比例的意義,能判斷兩種量是否成反比例關系,能找出生活中成反比例量的實例,并進行交流.
2.引導學生運用前面學習成正比例的量的學習方法學習反比例,從中感受學習方法的普遍適用性,培養學生的觀察能力、推理能力、歸納能力和靈活運用知識的能力.
教具、學具準備
視頻展示臺.
教學過程
一、復習引入
1.怎樣判斷兩種量是不是成正比例?
2.寫出正比例關系式.
3.判斷下面每題中的兩種量是不是成正比例,并說明理由.
(1)每本練習本的張數一定,裝訂練習本紙的總張數和裝訂的本數.
(2)每天播種的公頃數一定,播種的總公頃數與播種的天數.
(3)工作總量一定,工作效率和工作時間.
4.回想一下,我們怎樣學習成正比例的量.
引導學生歸納研究成正比例的量的學習步驟和方法是:先把兩種量的變化情況列成表,再觀察、討論表中的變化規律,歸納變化規律,并用關系式表示.學生回答時,教師隨學生的回答板書:
列表──觀察──討論──歸納──用關系式表示
二、導入新課
教師:這節課我們用同樣的學習方法來研究比例的另外一個規律。
三、進行新課
1.教學例4.
教師:同學們剛才在解答準備題時,知道“工作總量一定,工作效率和工作時間”不成正比例關系,那么,工作效率和工作時間成不成比例?如果成比例,又成什么比例呢?為了弄清這些問題,我們可以用前面掌握的學習方法,先列個表來分析.
在視頻展示臺上出示例4:華豐機械廠加工一批機器零件,每小時加工的.數量和所需的加工時間如下表:
工效(個) 10 20 30 40 50 60 …
時間(時) 60 30 20 15 12 10 …
教師:請同學們觀察這個表,先獨立思考后再討論、交流、回答以下問題:(在視頻展示臺上展示.)
(1)表中有哪兩種量?
(2)這兩種量是怎樣變化的?
(3)還可以從表中發現哪些規律?
學生討論后,先抽問第1問和第2問.引導學生說出表中有工作效率和工作時間這兩種量,這兩種量的變化規律是,工作效率不斷擴大,所需的工作時間反而不斷地縮小.
教師:為什么會有這種變化規律呢?
引導學生結合生活實例,說因為工作總量一定,每小時做的工作越多,所用的時間越少.例如要種8棵樹,如果每小時種1棵,要8小時;每小時種4棵,只要2小時;如果每小時種8棵呢,只要1小時就夠了.
教師:盡管一個量在擴大,另一個量反而縮小,但是每小時加工的個數是隨所需的加工時間的變化而變化的,所以,每小時加工的個數與所需的加工時間仍然是相關聯的兩種量.你們還發現些什么規律嗎?
學生任意說表中的規律.如每小時加工數從10擴大到40個,擴大4倍,所需的加工時間反而從60小時縮短到15小時,縮小了4倍;每小時加工數從60個縮小到30個,縮小了2倍,所需的加工時間反而從10小時擴大到20小時,擴大了2倍.
教師:還能發現哪些規律呢?比如說用每豎列的兩個數相乘,看看它們的乘積是否相等,想想這個乘積表示什么?
引導學生找出每豎列的兩個數的乘積相等的規律.如:
10×60=600,20×30=600,40×15=600,…
這個600實際上就是這批零件的總數.
教師:能寫出關系式嗎?
引導學生寫出:每小時加工數×加工時間=零件總數(一定)
2.教學例5.
教師:再來研究一個問題.
在視頻展示臺上出示例5:用600張紙裝訂成同樣的練習本,每本的張數和裝訂的本數有什么關系呢?請同學們先填寫下表:
每本的張數 15 20 25 30 40 60 …
裝訂的本數 40 …
教師:同學們先填寫好表中的數據后,再用前面的分析方法,獨立分析表中的數量關系,然后同桌進行交流.
學生分析后指導學生歸納:
(1)表中每本的張數和裝訂的本數是相關聯的兩種量,裝訂的本數隨著每本的張數的變化而變化;
(2)每本的張數擴大,裝訂的本數反而縮小;每本的張數縮小,裝訂的本數反而擴大;
(3)它們之間的關系可以寫成:每本的張數×裝訂的本數=紙的總張數(一定).
教師:我們上面研究了兩個問題,下面我們一起來歸納這兩個問題的一些共同特點.
引導學生歸納出這兩個問題中都有兩種相關聯的量,一種量擴大,另一種量反而縮小,這兩種量中相對應的兩個數的積一定.
教師:凡是符合以上規律的兩種量,我們就把它叫做成反比例的量.(板書課題)它們之間的關系就是反比例關系.和正比例一樣,成反比例的量也可以用式子來表示.如果用x和y表示兩種相關聯的量,用k表示它們的乘積(一定),怎樣用式子來表示反比例的關系式呢?
引導學生歸納出:x×y=k(一定).
教師:請同學們相互說一說生活中還有哪些是成反比例的量?
學生先相互說,然后再說給全班同學聽.
3.教學例6.
教師:請同學們用上面所學的知識判斷一下,在播種中如果播種的總公頃數一定,每天播種的公頃數和要用的天數是不是成反比例?為什么?
學生先獨立分析,然后再交流討論,最后抽學生匯報.引導學生分析出每天播種的公頃數和要用的天數是兩種相關聯的量,它們與總公頃數有“每天播種的公頃數×天數=總公頃數”的關系,由于總公頃數一定,所以每天播種的公頃數和要用的天數成反比例.
指導學生完成第16頁“做一做”.
四、鞏固練習
指導學生完成練習三第4~7題.
五、課堂小結
教師:這節課同學們學到了哪些知識?運用了哪些學習方法?還有哪些不懂的問題?
學生小結后教師再對全課知識進行歸納,學有余力的學生,可以在教師的指導下討論完成練習三的第8*題.
板書設計
成反比例的量學習的基本步驟和方法:列表──觀察──討論──歸納──用關系式表示. 兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系叫做反比例關系.
X×Y=K(一定)
例4: 例5:每小時加工數×加工時間=零件
每本的張數×裝訂的本數=紙的 總數(一定) 總張數(一定)
【《反比例》教案】相關文章:
《成反比例的量》教案03-17
《反比例》數學教案02-17
成反比例的量教案08-29
《正比例反比例》教案07-03
正反比例的數學復習教案08-26
關于反比例的教案設計11-28
《反比例》數學教案(精選19篇)08-19
《反比例》數學教案15篇02-17
反比例函數及其圖象教學教案06-15
反比例的意義03-16