四年級《乘法分配律》的教學(xué)反思(精選6篇)
作為一位優(yōu)秀的老師,我們需要很強的教學(xué)能力,我們可以把教學(xué)過程中的感悟記錄在教學(xué)反思中,快來參考教學(xué)反思是怎么寫的吧!下面是小編為大家收集的四年級《乘法分配律》的教學(xué)反思,歡迎閱讀,希望大家能夠喜歡。
四年級《乘法分配律》的教學(xué)反思1
《乘法分配律》是四年級第七單元的內(nèi)容,在此之前,學(xué)生上個學(xué)期已經(jīng)學(xué)過了加法交換律和結(jié)合律、乘法交換律和結(jié)合律,同時這個學(xué)期第四單元混合運算中也運用了學(xué)過的運算律進行簡便的計算,上課之前,我以為學(xué)生對這一部分的知識并不陌生,所以就簡單地設(shè)計了復(fù)習(xí),回顧學(xué)過的運算律,再讓學(xué)生發(fā)現(xiàn)運算律在簡便計算中的運用,接著就出示了上課的例題,讓學(xué)生從例題中尋找乘法分配律的影子,再通過舉例,比較發(fā)現(xiàn)乘法分配律并用字母表示出來,基本完成本節(jié)課的新授。通過鞏固練習(xí)讓學(xué)生認識乘法分配律在計算和實際生活問題中的運用。上課之前,我以為學(xué)生會跟著我的思路走,會很順利的上完整節(jié)課。但上完課,我發(fā)現(xiàn)我自己的課堂出現(xiàn)了很多的問題,總結(jié)了一下,我感覺自己在很多方面做得很不到位。 開始的時候,學(xué)生回顧運算律的時候出現(xiàn)了小的問題,讓我有一點束手無策,導(dǎo)致后面的復(fù)習(xí)題忘記出示,課堂環(huán)節(jié)被遺漏。 教學(xué)新課的時候,學(xué)生的列式不是我想要的算式的形式,我就直接寫出我想要的算式的形式了,其實這個時候可以用乘法交換律變成我想要的形式,同時,我也在想,知識應(yīng)該是靈活的,我也應(yīng)該寫出學(xué)生說出的那種形式,因為這是學(xué)生自己列出來的式子,他自己肯定能理解的,但課上我的做法就有點急于求成,有點生搬硬套了。
小組討論的時候也出現(xiàn)了很多的'問題,本來我認為這節(jié)課學(xué)生應(yīng)該很快地發(fā)現(xiàn)等式兩邊的特點的,也能很快地說出它們的共同點的,但上課的時候,小組討論中我發(fā)現(xiàn),學(xué)生根本不知道該如何發(fā)現(xiàn)這些算式的共同點,即使有些同學(xué)發(fā)現(xiàn)了一些特點也不知道該如何表達出來,課后反思了,我發(fā)現(xiàn)自己的問題設(shè)計的不好,學(xué)生不能明白地知道該從哪里入手,是比較數(shù)字上面的關(guān)系,還是觀察式子上的關(guān)系,還是看符號上的關(guān)系,所以導(dǎo)致學(xué)生不知道該怎么說,還有一點重要的原因是我在討論之前比較例題中的等式的時候沒有清楚地講到讓學(xué)生觀察等式的運算順序,導(dǎo)致學(xué)生不會說。另一方面,對于將等式抽象成一個字母表示的式子本身不是什么難事,但還要講出抽象的過程,對于四年級的學(xué)生有一點難度,學(xué)生能感覺出來就是這樣寫,但說的有理有據(jù)真的很困難。所以在我們的教學(xué)中,我們要考慮到學(xué)生的認知水平,讓學(xué)生說出他應(yīng)該有的想法就很好了,以后的教學(xué)中我們應(yīng)盡量讓學(xué)生進行小組討論說出自己的想法,同時也要注意小組討論的程度問題,提出適合學(xué)生的、有效的問題是很有必要的。
練習(xí)中,要更多地關(guān)注學(xué)生的能力發(fā)展,要讓學(xué)生說出自己的想法,把每一題的設(shè)計意圖理解清楚,根據(jù)題意正確地進行計算,并掌握做題的方法。
四年級《乘法分配律》的教學(xué)反思2
乘法分配律是學(xué)生較難理解和敘述的定律,比起乘法交換率和乘法結(jié)合率男掌握的多。因此在本節(jié)課教學(xué)設(shè)計上,我結(jié)合新課標(biāo)的一些基本理念和學(xué)生的具體情況,注重從實際出發(fā),把數(shù)學(xué)知識和實際生活緊密聯(lián)系起來,讓學(xué)生在不斷的感悟和體驗中學(xué)習(xí)新知識。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當(dāng)是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的。”數(shù)學(xué)教育家波利亞曾經(jīng)說過:“數(shù)學(xué)教師的首要責(zé)任是盡其一切可能,來發(fā)展學(xué)生解決問題的能力。”而我們過去的教學(xué)往往比較重視解決書上的數(shù)學(xué)問題,學(xué)生一旦遇到實際問題就束手無策。因此,上課一開始,我創(chuàng)造性地使用教材,創(chuàng)設(shè)了一個肯德基餐廳用餐的情境,使學(xué)生置身于非常熟悉的生活情境中,極大地激發(fā)了學(xué)生的學(xué)習(xí)欲望。學(xué)生很快地按要求用兩種不同的方法列出算式,并且能夠輕而易舉地證明兩式相等。接著要求學(xué)生通過觀察這個等式看看能否發(fā)現(xiàn)什么規(guī)律。在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的研究機會:“請你再舉出一些符合自己心中規(guī)律的等式”,繼續(xù)讓學(xué)生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點,驗證其內(nèi)在的規(guī)律,從而概括出乘法分配律。這樣既培養(yǎng)了學(xué)生的猜想能力,又培養(yǎng)了學(xué)生驗證猜想的能力。學(xué)生通過自主探索去發(fā)現(xiàn)、猜想、質(zhì)疑、感悟、調(diào)整、驗證、完善,主體性得到了充分的發(fā)揮。
同時,我還注重學(xué)生的合作與交流,多向互動。倡導(dǎo)課堂教學(xué)的動態(tài)生成是新課程標(biāo)準(zhǔn)的重要理念。在數(shù)學(xué)學(xué)習(xí)中,每個學(xué)生的思維方式、智力、活動水平都是不一樣的。因此,為了讓不同的學(xué)生在數(shù)學(xué)學(xué)習(xí)中得到不同的發(fā)展,我在本課教學(xué)中立足通過生生、師生之間多向互動,特別是通過學(xué)生之間的互相啟發(fā)與補充來培養(yǎng)他們的合作意識,實現(xiàn)對“乘法分配律”的主動建構(gòu)。學(xué)生在這樣一個開放的環(huán)境中博采眾長,共同經(jīng)歷猜想、驗證、歸納知識的形成過程,共同體驗成功的快樂。既培養(yǎng)了學(xué)生的問題意識,又拓寬了學(xué)生思維能力,學(xué)生也學(xué)得積極主動。
應(yīng)用規(guī)律,解決實際問題是數(shù)學(xué)學(xué)習(xí)的目的所在。在練習(xí)題型的設(shè)計上,有搶答(填空)題、判斷題、連線題、簡算題和拓展題,它們并不孤立,而是有機地聯(lián)系在一起,由基本題到變式題,由一般題到綜合題,有一定的梯度和廣度。使學(xué)生逐步加深認識,在弄清算理的基礎(chǔ)上,學(xué)生能根據(jù)題目的特點,靈活地運用所學(xué)知識進行簡便運算和拓展練習(xí)。不僅要求學(xué)生會順向應(yīng)用乘法分配律,而且還要求學(xué)生會反向應(yīng)用。通過正反應(yīng)用的練習(xí),加深學(xué)生對乘法分配律的.理解。從課堂反饋來看,學(xué)生熱情較高,能夠?qū)W以致用,知識掌握的牢固。學(xué)生通過自己的努力以及和同學(xué)的交流合作,解題速度和準(zhǔn)確性都很理想。
本節(jié)課有一定的亮點,但其中出現(xiàn)了不少問題:學(xué)生參與的積極性沒有預(yù)想中那么高。可能與我相對缺乏激勵性語言有關(guān)。也有可能今天的題材學(xué)生不太感興趣。以后注意,學(xué)生不感興趣的材料,教師應(yīng)該想辦法使呈現(xiàn)的這個材料變得能讓學(xué)生感興趣。另外,在回答問題時,個別學(xué)生的語言不夠流利、準(zhǔn)確。對乘法分配律的敘述稍顯羅嗦,不夠堅定、自信。在這方面有待今后加強訓(xùn)練和提高。
四年級《乘法分配律》的教學(xué)反思3
乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律是四年級學(xué)習(xí)的重點,也是難點之一。也是一節(jié)比較抽象的概念課,教學(xué)時我根據(jù)教學(xué)內(nèi)容的特點,為學(xué)生提供了多種探究方法,激發(fā)了學(xué)生的自主意識。
上課時,我以輕松愉快的閑聊方式出示我們身邊最熟悉的教學(xué)資源,以教室地面引出長方形面積的計算,兩種方法解決問題,得出算式:(8+6)×2=8×2+6×2,從上面的觀察與分析中,你能發(fā)現(xiàn)什么規(guī)律?通過觀察算式,尋找規(guī)律。讓學(xué)生在討論中初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個算式都是相等的?此時,我不是急于告訴學(xué)生答案,而是讓學(xué)生自己通過舉例加以驗證。學(xué)生興趣濃厚,這里既培養(yǎng)了學(xué)生的猜測能力,又培養(yǎng)了學(xué)生驗證猜測的能力。從而讓學(xué)生知道乘法分配律給大家計算帶來的便利。從而感受數(shù)學(xué)的美。
這堂課由具體到抽象,大多需要學(xué)生體驗得來,上下來感覺很好,學(xué)生很投入,似乎都掌握了,可在練習(xí)時還是發(fā)現(xiàn)了一些問題。如:學(xué)生在學(xué)習(xí)時知道“分別”的意思,也提醒大家注意,但在實際運用中,還是出現(xiàn)了漏乘的現(xiàn)象。針對這一現(xiàn)象我認為在練習(xí)課時要加以改進。注重從學(xué)生的實際出發(fā),把數(shù)學(xué)知識和實際生活緊密聯(lián)系起來,讓學(xué)生在不斷的感悟和體驗中學(xué)習(xí)知識。
乘法分配律在乘法的`運算定律中是一個比較難理解的定律,因此在上課前我作了充分的準(zhǔn)備。因為學(xué)生在三年級時已經(jīng)學(xué)過求長方形周長的兩種通過一節(jié)課的學(xué)習(xí),學(xué)生對乘法分配律的大致規(guī)律能理解,也能靈活運用,但是要求用語言來歸納或用字母表示乘法分配律的規(guī)律,有部分學(xué)生就感到很為難了。感覺他們只能意會不能言傳般。課本中關(guān)于乘法分配律只有一個植樹的例題,但是練習(xí)中有關(guān)乘法分配律的運用卻靈活而多變,學(xué)生們應(yīng)用起來有些不知所措,針對這種現(xiàn)狀,我把乘法分配律的運用進行了歸類,分別取個名字,讓學(xué)生能針對不同的題目能靈活應(yīng)用。
乘法分配律大致上有這樣三類:
一、平均分配法。如:(125+50)*8=125*8+50*8.即125和50要進行平均分配,都要和8相乘。不能只把其中一個數(shù)字與8相乘,這樣不公平,稱不上是平均分配法,學(xué)生印象很深刻,開始還有部分學(xué)生只選擇一個數(shù)與8相乘,歸納方法后學(xué)生都能正確應(yīng)用了。
二、提取公因數(shù)法。如:25*40+25*60=25*(40+60)解題關(guān)鍵:找準(zhǔn)兩個乘法式子中公有的因數(shù),提取出公因數(shù)后,剩下的另一個數(shù)字該相加還是該相減,看符號就能確定了。
三:拆分法。如:102*45=(100+2)*45=100*45+2*45這類題的關(guān)鍵在于觀察那個數(shù)字最接近整百數(shù),將它拆分成整百數(shù)加一個數(shù)或者整百數(shù)減去一個數(shù),再應(yīng)用懲罰的分配率進行簡算。有了歸類,學(xué)生再見到題目就能依據(jù)數(shù)字或運算符號的特征熟練進行乘法分配律的簡算了。
以這個為切入點,從而比較順利地引入新課,正好那天是植樹節(jié)所以我又創(chuàng)讓“打比方”成為數(shù)學(xué)課堂的閃光點。
凡是教過小學(xué)數(shù)學(xué)乘法運算律的教師都會體會到“乘法分配律”是乘法運算律中最難掌握的。學(xué)生在做練習(xí)題中錯誤最多。所以課前我對教材進行了身隊深度的剖析和思考。最后想出了用打比方突破課堂難點。雖然我們的“比方”有時看來似乎有點不恰當(dāng),但是這種比方對開發(fā)學(xué)生的想象力,推理能力以及拓展思路竟達到了意想不到的效果。我是這樣做的:
我由解決問題引出乘法分配律的等式,但我沒有急于給學(xué)生灌注這叫乘法分配率,而是寫下了這樣一個式子;{姐姐+我}×媽媽=姐姐×媽媽+我×媽媽然后提問:“誰能解釋為什么我這樣寫嗎?思維活躍的學(xué)生馬上就會回答:“因為媽媽是你和姐姐共有的,所以你和姐姐都有資格和媽媽在一起。”......學(xué)生們的學(xué)習(xí)興趣一下被調(diào)動起來了,他們明白了數(shù)學(xué)原來也是通俗易懂的。然后我再讓他們閱讀教材,給這個看似“不恰當(dāng)”的比方定性為“乘法分配率”。歸納整合為字母算式:(a+b)×c=a×c+b×c,這時我再此讓學(xué)生展開聯(lián)想,讓他們學(xué)著老金剛怒目在自己身邊和生活中進行舉例,學(xué)生很快舉出(上衣+褲子)×人=上衣×人+褲子×人,(鉛筆+圓珠筆)×本子=鉛筆×本子+圓珠筆×本子等例子等不是十分貼切,但卻富有情趣,孩子在編例子的同時,其實已把握了乘法分配律的特征,學(xué)生就不會出現(xiàn)(a+b)×c=a×c+b的錯誤,在生動活潑的“打比方”中,既帶給了學(xué)生體驗學(xué)習(xí)的快樂,又讓我們枯燥深奧的數(shù)學(xué)概念成為形象而具體的理解形成,這種教法我在教“乘法交換律”時也用到過,我在結(jié)尾時把它總結(jié)為“左右搬家”然后講了個鋪子搬家的故事,學(xué)生們在津津樂道的故事中,在形象貼切的“打比方”中學(xué)懂了數(shù)學(xué)知識,收到了良好的效果,真正使數(shù)學(xué)課堂貼近生活。
設(shè)了這樣一個情境,“一共有25個小組參加植樹 乘法分配律在乘法的運算定律中是一個比較難乘法分配律的教學(xué)是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)習(xí)這幾個定律中的難點。對于乘法分配律的教學(xué),我沒有把重點放在數(shù)學(xué)語言的表達上,而是把重點放在讓學(xué)生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證。
以學(xué)生身邊熟悉的情境為教學(xué)的切入點,激發(fā)學(xué)生主動學(xué)習(xí)的需要,提出問題:共有多少名同學(xué)參加了這次植樹活動?通過兩種方法和算式的比較,使學(xué)生初步感知乘法分配律。
展示知識的發(fā)生過程,引導(dǎo)學(xué)生積極主動探究。先讓學(xué)生根據(jù)問題,用不同的方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個等式,讓學(xué)生觀察,初步感知“乘法分配律”。然后要求學(xué)生照樣子說出幾組這樣的等式,引導(dǎo)學(xué)生再觀察,讓學(xué)生說明自己發(fā)現(xiàn)的規(guī)律。這樣學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成過程。不僅讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識和基本技能,而且培養(yǎng)學(xué)生主動探究、發(fā)現(xiàn)知識的能力。
最后讓學(xué)生比較乘法交換律和結(jié)合律與分配率的最大區(qū)別,前者只在連乘的同一級運算中運用,后者是在兩級運算中運用,所以,看清題目是一級運算還是兩級運算對決定算法非常重要。這節(jié)課雖然成功引導(dǎo)學(xué)生發(fā)現(xiàn)了定律,但教完之后,在練習(xí)過程中還有部分學(xué)生掌握不好,在后一階段依然要加強練習(xí),邊練習(xí)邊總結(jié)算法,使學(xué)生達到熟能生巧的程度。
四年級《乘法分配律》的教學(xué)反思4
教材分析:
乘法分配律是北師大版小學(xué)數(shù)學(xué)四年級上冊第三單元最后一節(jié)的教學(xué)內(nèi)容。本課是在學(xué)生已經(jīng)學(xué)習(xí)掌握了乘法交換律、結(jié)合律,并能初步應(yīng)用這些定律進行一些簡便計算的基礎(chǔ)上進行學(xué)習(xí)的。乘法分配律是本單元教學(xué)的一個重點,也是本單元內(nèi)容的難點,教材是按照發(fā)現(xiàn)問題--提出假設(shè)--舉例驗證--歸納結(jié)論等層次進行的。然而乘法分配律又不是單一的乘法運算,還涉及到加法的運算,是學(xué)生學(xué)習(xí)的難點。因此本節(jié)課不僅使學(xué)生學(xué)會什么是乘法分配律,更要讓學(xué)生經(jīng)歷探索規(guī)律的過程,進而培養(yǎng)學(xué)生的分析、推理、抽象、概括的思維能力。
1.上課一開始,我創(chuàng)造性地使用教材,創(chuàng)設(shè)了訂校服的教學(xué)情境,使學(xué)生解決非常熟悉的生活問題、
2.在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的研究機會:“請你再舉出一些符合自己心中規(guī)律的等式”,繼續(xù)讓學(xué)生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點,驗證其內(nèi)在的規(guī)律,從而概括出乘法分配律。
3.本節(jié)課有一定的亮點,但其中出現(xiàn)了不少問題:學(xué)生參與的積極性沒有預(yù)想中那么高。可能與我相對缺乏激勵性語言有關(guān)。也有可能今天的`題材學(xué)生不太感興趣。
4.以后注意,學(xué)生不感興趣的材料,教師應(yīng)該想辦法使呈現(xiàn)的這個材料變得能讓學(xué)生感興趣
教學(xué)反思:
乘法分配律是第三單元的一個難點。在理解、掌握和運用上都有一定難度。因此如何上好這一課,讓學(xué)生真正地理解乘法分配律,并在理解的基礎(chǔ)上運用好它?我覺得要注重形式上的認識,更要注重意義上的理解。因為單從形式上去記住乘法分配律是有局限性的,以后在運用乘法分配律的時候,遇到一些變式如:99×24+24會變得難以解決。注重意義的理解,能讓學(xué)生從更高的層面上去理解乘法分配律,那么將來無論形式上怎么變化,學(xué)生都能輕松運用乘法分配律。
北師大版的教材注重學(xué)生的探索活動,在探索中讓學(xué)生自己去發(fā)現(xiàn)的規(guī)律,才能讓他們真正地理解。本課是“探索與發(fā)現(xiàn)”的第三節(jié)課了,學(xué)生已經(jīng)有了一定的探索能力。因此本課的設(shè)計完全圍繞著學(xué)生的自主活動在進行。
總體上我的教學(xué)思路是由具體——抽象——具體。在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在學(xué)習(xí)中大膽放手,把學(xué)生放在主動探索知識規(guī)律的主體位置上,讓學(xué)生能自由地利用自己的知識經(jīng)驗、思維方式去發(fā)現(xiàn)規(guī)律,驗證規(guī)律,表示規(guī)律,歸納規(guī)律,應(yīng)用規(guī)律。
在教學(xué)過程中,也有不盡人意的地方,如雖然本節(jié)課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內(nèi)容時,學(xué)生難以完整地總結(jié)出乘法分配律,另外還有部分學(xué)困生對乘法分配律不太理解,運用時問題較多等。
四年級《乘法分配律》的教學(xué)反思5
乘法分配律教學(xué)是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上進行的。它是學(xué)生較難理解與敘述的定律。因此我在教學(xué)中讓學(xué)生在不斷的感悟、體驗、練習(xí)中理解乘法分配律,從而達到熟練掌握的效果。
一、從學(xué)生已有生活經(jīng)驗出發(fā),通過觀察、類比、歸納、驗證、運用等方法深化和豐富對乘法分配律的認識。滲透“由特殊到一般,再由一般到特殊”的認識事物的方法,培養(yǎng)學(xué)生獨立自主、主動探索、發(fā)現(xiàn)問題,解決問題的能力,提高數(shù)學(xué)的`應(yīng)用意識。
二、在本課教學(xué)過程的設(shè)計上,我盡量想體現(xiàn)新課標(biāo)的一些理念,注重從實際出發(fā),把數(shù)學(xué)知識和實際生活緊密聯(lián)系起來,讓學(xué)生在體驗中學(xué)到知識。舉例:設(shè)計學(xué)校買書的情景。讓學(xué)生幫助出主意。出示:“一套故事書45元,一套科技書35元,各買3套書。一共需要多少元錢?”讓學(xué)生嘗試通過不同的方法得出:(45 +35 )×3 = 80×3 = 240(元)、45×3 + 35×3 = 135+105= 240(元)。此時,讓學(xué)生觀察通過計算方法得到了相同的結(jié)果,這兩個算式可用“=”連接。使之讓學(xué)生從中感受了乘法分配律的模型。從而引出乘法分配律的概念:“兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結(jié)果不變。”用字母形式表示:(a + b)× c = a × c + b × c
本節(jié)課氣氛活躍,學(xué)生積極性高。可通過練習(xí)發(fā)現(xiàn)孩子們掌握得并不如意,在下節(jié)課我將繼續(xù)加強練習(xí)。
四年級《乘法分配律》的教學(xué)反思6
乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上教學(xué)的。它的教學(xué)重點是讓學(xué)生感知乘法分配律,知道什么是乘法分配律,難點是理解乘法分配律的意義,并會用乘法分配律進行一些簡便運算。所以本堂課我通過口算、讀算式、寫類似算式等多種方式讓學(xué)生去感知乘法分配律,最后由學(xué)生總結(jié)出乘法分配律概念。本堂課我感到比較滿意的地方,就是把課堂的主體權(quán)交給了學(xué)生,學(xué)生們都很主動積極的參與到學(xué)習(xí)中來,可是不足之處頗多。
1、在要求同學(xué)們?nèi)タ偨Y(jié)出乘法分配律的概念時老師沒有很好的引導(dǎo),導(dǎo)致同學(xué)對乘法分配律特點的認識比較模糊。
2、課堂用語不夠簡潔。
結(jié)合學(xué)生的'掌握情況我覺得教學(xué)此內(nèi)容需要注意以下幾點:
1、區(qū)分乘法結(jié)合律與乘法分配律的特點,多進行對比練習(xí)。乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩數(shù)的和乘一個數(shù)或兩個積的和。在練習(xí)中(40+4)×25與(40×4)×25這種題學(xué)生特別容易出現(xiàn)錯誤。為了學(xué)生更好地掌握可以多進行一些對比練習(xí)。如:進行題組對比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習(xí)中可以提問:每組算式有什么特征和區(qū)別?符合什么運算定律的特征?應(yīng)用運算定律可以使計算簡便嗎?為什么要這樣算?
2、學(xué)生進行一題多解的練習(xí),經(jīng)歷解題策略多樣性的過程,優(yōu)化算法,加深學(xué)生對乘法結(jié)合律與乘法分配律的理解。
3、多練。針對典型題目多次進行練習(xí)。典型題型可選擇(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。對于比較特殊的題目可間斷性練習(xí),對優(yōu)生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。
四年級《乘法分配律》的教學(xué)反思7
乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律并能初步應(yīng)用這些定律進行一些簡便計算的基礎(chǔ)上進行教學(xué)的。乘法分配律是本單元教學(xué)的一個重點,也是本單元內(nèi)容的難點,因為乘法分配律不是單一的乘法運算,還涉及到加法的運算,是學(xué)生學(xué)習(xí)的難點。因此本節(jié)課不僅使學(xué)生學(xué)會什么是乘法分配律,更要讓學(xué)生經(jīng)歷探索規(guī)律的過程,進而培養(yǎng)學(xué)生的分析、推理、抽象、概括的思維能力。
上課時,我以輕松愉快的閑聊方式出示我們身邊最熟悉的教學(xué)資源,以教室地面引出長方形面積的計算,兩種方法解決問題,得出算式:(8+6)×2=8×2+6×2,從上面的觀察與分析中,你能發(fā)現(xiàn)什么規(guī)律?通過觀察算式,尋找規(guī)律。讓學(xué)生在討論中初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個算式都是相等的?此時,我不是急于告訴學(xué)生答案,而是讓學(xué)生自己通過舉例加以驗證。學(xué)生興趣濃厚,這里既培養(yǎng)了學(xué)生的猜測能力,又培養(yǎng)了學(xué)生驗證猜測的能力。
這堂課由具體到抽象,大多需要學(xué)生體驗得來,上下來感覺很好,學(xué)生很投入,似乎都掌握了,可在練習(xí)時還是發(fā)現(xiàn)了一些問題。如:學(xué)生在學(xué)習(xí)時知道“分別”的意思,也提醒大家注意,但在實際運用中,還是出現(xiàn)了漏乘的現(xiàn)象。針對這一現(xiàn)象我認為在練習(xí)課時要加以改進。注重從學(xué)生的實際出發(fā),把數(shù)學(xué)知識和實際生活緊密聯(lián)系起來,讓學(xué)生在不斷的感悟和體驗中學(xué)習(xí)知識。乘法分配律在乘法的運算定律中是一個比較難理解的定律,通過這一節(jié)課的學(xué)習(xí),學(xué)生對乘法分配律的大致規(guī)律能理解,也能靈活運用,但是要求用語言來歸納或用字母表示乘法分配律的規(guī)律,有部分學(xué)生就感到很為難了。感覺他們只能意會不能言傳。課本中關(guān)于乘法分配律只有一個求跳繩根數(shù)的例題,但是練習(xí)中有關(guān)乘法分配律的運用卻靈活而多變,學(xué)生們應(yīng)用起來有些不知所措,針對這種現(xiàn)狀,我把乘法分配律的.運用進行了歸類,分別取個名字,讓學(xué)生能針對不同的題目能靈活應(yīng)用。
乘法分配律大致上有這樣三類:
一、平均分配法。如:(125+50)*8=125*8+50*8.即125和50要進行平均分配,都要和8相乘。不能只把其中一個數(shù)字與8相乘,這樣不公平,稱不上是平均分配法,學(xué)生印象很深刻,開始還有部分學(xué)生只選擇一個數(shù)與8相乘,歸納方法后學(xué)生都能正確應(yīng)用了。
二、提取公因數(shù)法。如:25*40+25*60=25*(40+60)解題關(guān)鍵:找準(zhǔn)兩個乘法式子中公有的因數(shù),提取出公因數(shù)后,剩下的另一個數(shù)字該相加還是該相減,看符號就能確定了。
三、拆分法。如:102*45=(100+2)*45=100*45+2*45這類題的關(guān)鍵在于觀察那個數(shù)字最接近整百數(shù),將它拆分成整百數(shù)加一個數(shù)或者整百數(shù)減去一個數(shù),再應(yīng)用乘法的分配率進行簡算。有了歸類,學(xué)生再見到題目就能依據(jù)數(shù)字或運算符號的特征熟練進行乘法分配律的簡算了。
四年級《乘法分配律》的教學(xué)反思8
乘法分配律是四年級學(xué)習(xí)的重點,也是難點之一。它是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的,是一節(jié)比較抽象的概念課,教學(xué)是我根據(jù)教學(xué)內(nèi)容的特點,為學(xué)生提供多種探究方法,激發(fā)學(xué)生的自主意識。
一、在對本節(jié)課的教學(xué)目標(biāo)上,我定位在:
(1)通過學(xué)生比賽列式計算解決情景問題后,觀察、比較、分析理解乘法分配律的含義,教師引導(dǎo)學(xué)生概括出乘法分配律的內(nèi)容。
(2)初步感受乘法分配律能使一些計算簡便。
(3)培養(yǎng)學(xué)生分析、推理、概括的思維能力。
二、結(jié)合自己所教案例,對本節(jié)課教學(xué)策略進行以下幾點簡要分析:
1、總體上我的教學(xué)思路是由具體——抽象——具體。
在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學(xué)是橫向觀察,也有同學(xué)是縱向觀察,老師都予以肯定和表揚,目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗。
2、從學(xué)生已有知識出發(fā)。
教師要深入了解各層次學(xué)生思維實際,提供充分的信息,為各層次學(xué)生參與探索學(xué)習(xí)活動創(chuàng)造條件,沒有學(xué)生主體的主動參與,不會有學(xué)生主體的主動發(fā)展,教師若不了解學(xué)生實際,一下子把學(xué)習(xí)目標(biāo)定得很高,勢必會造成部分學(xué)生高不可攀而坐等觀望,失去信心浪費寶貴的學(xué)習(xí)時間。以往教學(xué)該課時都是以計算引入,有復(fù)習(xí)舊知,也有比一比誰的計算能力強開場。我想是不是可以拋開計算,帶著愉快的心情進課堂,因此,我在一開始設(shè)計了一個植樹的情境,讓學(xué)生在一個寬松愉悅的環(huán)境中,走進生活,開始學(xué)習(xí)新知。這樣所設(shè)的起點較低,學(xué)生比較容易接受。
3、鼓勵學(xué)生大膽猜想。
猜想是科學(xué)發(fā)現(xiàn)的前奏。學(xué)生的學(xué)習(xí)活動中同樣不能沒有猜想,否則,主體性探究活動便缺少了內(nèi)在的動力,自主學(xué)習(xí)的過程也成了失去目標(biāo)的無意義操作。學(xué)生看到加法交換律和加法結(jié)合律,從直觀上產(chǎn)生了關(guān)于乘法運算定律的猜想。于是,接下來的舉例就成了驗證猜想的必需,無論猜想的結(jié)論是“是”還是“非”,學(xué)生的`思維一直是活躍著的,對學(xué)生都是有意義的。這個過程是教會學(xué)生
學(xué)習(xí)與掌握探索方法的過程,是培養(yǎng)學(xué)生學(xué)習(xí)品格的過程。
4、師生平等交流。
教學(xué)過程是師生共創(chuàng)共生的過程,新課程確定的培養(yǎng)目標(biāo)和所倡導(dǎo)的學(xué)習(xí)方式要求
教師必須轉(zhuǎn)換角色。改變已有的教學(xué)行為,教師必須從“師道尊嚴”的架子中走出來,與學(xué)生平等地參與教學(xué),成為共同建構(gòu)學(xué)習(xí)的參與者。在以上教學(xué)片斷中,教師讓學(xué)生充分經(jīng)歷學(xué)習(xí)過程,調(diào)動學(xué)生學(xué)習(xí)的熱情:猜想——傾聽——舉例——驗證,在欣賞學(xué)生的“閃光”處給學(xué)生“點撥”。教師沒有過多的講授,也沒有花大量的時間去刻意的創(chuàng)設(shè)教學(xué)情境,只是做喚醒學(xué)生主體意識的工作,引導(dǎo)學(xué)生大膽猜想,大膽表達。學(xué)生借助已有的知識經(jīng)驗,自主解決新問題,使學(xué)生的主體地位得以體現(xiàn)。
四年級《乘法分配律》的教學(xué)反思9
“乘法分配律”的學(xué)習(xí)是在學(xué)習(xí)了乘法交換律和乘法結(jié)合律之后進行的,對于乘法分配律的理解和應(yīng)用上都比前兩個運算定律更有難度,學(xué)生在新課學(xué)習(xí)和知識的應(yīng)用的過程中思路還比較清晰,但是在作業(yè)的過程中出現(xiàn)的好多問題,讓人感覺孩子并沒有對定律有真正意義上的理解。如:(40+4)×25,有時,只用40×25,后面只加上4就行了,還有的把這道題目改成了連乘題,根據(jù)孩子出現(xiàn)的問題和練習(xí)中出現(xiàn)的困惑,我認真的設(shè)計的這節(jié)練習(xí)課。
第一,理清思路,,建構(gòu)完整的知識體系。在本節(jié)課中,我和學(xué)生們一起回顧了乘法的幾種運算定律,比較每種運算定律的`字母公式,來區(qū)分乘法交換律、乘法結(jié)合律和乘法分配律之間的外形結(jié)構(gòu)特點,引導(dǎo)學(xué)生發(fā)現(xiàn),乘法結(jié)合律是幾個數(shù)連乘,而乘法分配律是兩數(shù)的和乘一個數(shù)或者是兩個積的和.從運算符號上我們很快就可以找到它們的不同。乘法交換律和乘法結(jié)合律都只有乘號,而乘法分配律有不同級的兩種運算符號。
第二,優(yōu)化練習(xí)題,實行精練。針對學(xué)生在乘法分配律學(xué)習(xí)后在理解上的困難,及乘法分配律在練習(xí)形式上的多變,我找出課本、課堂作業(yè)本以及一些課外輔導(dǎo)資料上的乘法分配律的計算題,把他們進行概括總結(jié),把不同類型的乘法分配律的方法進行練習(xí),講解。讓學(xué)生對不同的乘法分配律的解決方法都進行嘗試,幫助理解,加深記憶。
第三,一題多法。例如25×44,學(xué)生在利用乘法分配律拆分其中一個數(shù)據(jù)的時候,有多種方法,有的學(xué)生把25拆成20+5,有的是拆了40+4,還有的把25×44轉(zhuǎn)化成25×4×11,這些方法都可以,讓學(xué)生分辨出每一種方法所運用的運算定律,從而加深學(xué)生對知識的認識和理解,在此基礎(chǔ)上,選出最佳方案。
乘法分配律的練習(xí)實在是多種多樣,變幻無窮,要想更好的掌握,關(guān)鍵還是要理解,需多練.
四年級《乘法分配律》的教學(xué)反思10
《乘法分配律》是本章的難點,它不是單一的乘法運算,還涉及到加法運算。教材對于這部分內(nèi)容的處理方法與前面講乘法結(jié)合律的方法類似。在設(shè)計本教案的過程中,我一直抱著“以學(xué)生發(fā)展為本”的宗旨,試圖尋找一種在完成共同的學(xué)習(xí)任務(wù)、參與共同的學(xué)習(xí)活動過程中實現(xiàn)不同的人的數(shù)學(xué)水平得到不同發(fā)展的教學(xué)方式。結(jié)合自己所教案例,對本節(jié)課教學(xué)策略進行以下幾點簡要分析:
一、教師要深入了解各層次學(xué)生思維實際,提供充分的信息,為各層次學(xué)生參與探索學(xué)習(xí)活動創(chuàng)造條件,沒有學(xué)生主體的主動參與,不會有學(xué)生主體的主動發(fā)展,教師若不了解學(xué)生實際,一下子把學(xué)習(xí)目標(biāo)定得很高,勢必會造成部分學(xué)生高不可攀而坐等觀望,失去信心浪費寶貴的學(xué)習(xí)時間。以往教學(xué)該課時都是以計算引入,有復(fù)習(xí)舊知,也有比一比誰的`計算能力強開場。我想是不是可以拋開計算,帶著愉快的心情進課堂,因此,我在一開始設(shè)計了一個購物的情境,讓學(xué)生在一個寬松愉悅的環(huán)境中,走進生活,開始學(xué)習(xí)新知。這樣所設(shè)的起點較低,學(xué)生比較容易接受。
二、讓學(xué)生根據(jù)自己的愛好,選擇自己喜歡的書,出來的算式就比較開放。學(xué)生能自由發(fā)揮,對所學(xué)內(nèi)容很感興趣,氣氛熱烈。由學(xué)生計算總價列式,到通過計算發(fā)現(xiàn)兩個形式不一樣的算式,結(jié)果卻是一樣的。這都是在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上得到的結(jié)論,是來自于學(xué)生已有的數(shù)學(xué)知識水平的。
四年級《乘法分配律》的教學(xué)反思11
1、乘法分配律的教學(xué)既要注重它的外形結(jié)構(gòu)特點,也要同時注重其內(nèi)涵
教學(xué)中通過解決“濟青高速公路全長多少千米”這一問題,結(jié)合具體的生活情景,得到了(110+90)x2=110x2+90x2”這一結(jié)果,教學(xué)中只注重了等式的外形特點,即兩個數(shù)的和乘一個數(shù)=兩個積的和。缺乏從乘法意義角度的理解。這時教師可提問“為什么兩個算式是相等的?”這里不僅要從解題思路的角度理解兩個算式是相等的,還要從乘法意義的角度理解,即左邊表示200個2,右邊也表示200個2。所以(110+90)x2=110x2+90x2。
2、注意區(qū)分乘法結(jié)合律與乘法分配律的`特點,多進行對比練習(xí)
乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩數(shù)的和乘一個數(shù)或兩個積的和。在練習(xí)中(40+4)×25與(40×4)×25這種題學(xué)生特別容易出現(xiàn)錯誤。為了學(xué)生更好地掌握可以多進行一些對比練習(xí)。如:進行題組對比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習(xí)中可以提問:每組算是個有什么特征和區(qū)別?符合什么運算定律的特征?應(yīng)用運算定律可以使計算簡便嗎?為什么要這樣算?
3、讓學(xué)生進行一題多解的練習(xí),經(jīng)歷解題策略多樣性的過程,優(yōu)化算法,加深學(xué)生對乘法結(jié)合律與乘法分配律的理解
如:計算125×88;101×89你能用幾種方法?125×88①豎式計算;②125×8×11;③125×(80+8)等。101×89①豎式計算;②(100+1)×89;③101×(80+9)等。對不同的解題方法,引導(dǎo)學(xué)生進行對比分析,什么時候用乘法結(jié)合律簡便,什么時候用乘法分配律簡便?明確利用乘法結(jié)合律與乘法分配律進行簡算,乘法結(jié)合律適用于連乘的算式,而乘法分配律一般針對有兩種運算的算式。力爭達到“用簡便算法進行計算”成為學(xué)生的一種自主行為,并能根據(jù)題目的特點,靈活選擇適當(dāng)?shù)乃惴ǖ哪康摹?/p>
4、多練
針對典型題目多次進行練習(xí)。練習(xí)時注意練習(xí)量和練習(xí)時間的安排。剛開始可以天天練,過段時間以后可以過1-2天練習(xí)一次,再到1周練習(xí)一次。典型題型可選擇(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。對于比較特殊的題目可間斷性練習(xí),對優(yōu)生提出掌握的要求。如68×25+68+68×74,32×125×25等。
四年級《乘法分配律》的教學(xué)反思12
怎樣才能化解乘法分配律的教學(xué)難點,我想,最終還得在情境中體驗從乘法的意義上去理解。
于是,我在教學(xué)時創(chuàng)設(shè)了許多的生活情境,讓學(xué)生多次的感悟和體驗,學(xué)生從意義上有了較好地理解,比如:6×12+4×12,可以讓學(xué)生理解成6個12加4個12共10個12,所以可以這樣得出:6×12+4×12=(6+4)×12。
從意義上的'理解使學(xué)生最終擺脫了因強記模式而不會解的題,如:99×99+99,學(xué)生可以輕松地說出99個99加上1個99,一共100個99,99×99+99=100×99=9900。
四年級《乘法分配律》的教學(xué)反思13
乘法的分配律學(xué)生在本冊書中是接觸過的。譬如第42頁的應(yīng)用題第7題,其中就滲透了乘法的分配律。在數(shù)學(xué)一課一練上也有過這種類似的形式。以前在講的時候是從乘法的意義上來幫助學(xué)生理解。
一、抓住重點。讓學(xué)生理解乘法分配律的意義。
教材按照得出兩道算式,把兩道算式寫成等式,分析兩道算式之間的聯(lián)系,寫出類似的幾組算式。發(fā)現(xiàn)規(guī)律,用語言或其他方式交流規(guī)律,給出用字母式子表示的運算律。這樣的安排,便于學(xué)生經(jīng)歷觀察、分析、比較和根據(jù)的過程。能使學(xué)生在合作交流的過程中,對簡潔分配律的認識由感性逐步上升到理性。教學(xué)用書上寫道:教學(xué)的'重點和關(guān)鍵應(yīng)是引導(dǎo)學(xué)生自主發(fā)現(xiàn)規(guī)律,用語言或其他方式與同伴交流規(guī)律。
在教學(xué)時,我是按照如上的步驟進行教學(xué)的。可是在我引導(dǎo)學(xué)生把算式寫成等式的時候讓學(xué)生觀察左右兩邊算式之間的聯(lián)系與區(qū)別之后,學(xué)生就根本不知道從何下手。在他們的印象中,聯(lián)系就是根據(jù)乘法的意義來進行聯(lián)系。根本沒有從數(shù)字上面去進行分析。可以說,局限在原先的思維中,而沒有跳出來看。而讓學(xué)生寫出幾組算式后,觀察分析幾組等式左右兩邊的區(qū)別之后,學(xué)生也還是無法用語言來表達這一規(guī)律。場面一時之間很冷,后來我只好直接讓學(xué)生用字母來表示,變化為這樣的形式之后,有很多的學(xué)生都能夠?qū)懗鰜怼?/p>
我不明白這是為什么,時間我給了,小組也交流了,在小組交流時我已經(jīng)發(fā)現(xiàn)我們班上的學(xué)生根本無法發(fā)現(xiàn)其中的規(guī)律,所以也根本無法用語言來進行表達。難道是坡度給得不夠嗎?還是平時的教學(xué)中出現(xiàn)了問題。這些都要一一地去分析。
總之,這個關(guān)鍵今天并沒有完成好。
二、考慮學(xué)生的學(xué)習(xí)情況,尊重他們的主觀感受。
在引導(dǎo)學(xué)生把兩道算式拼成一道等式之后,我讓學(xué)生交流,結(jié)果學(xué)生給出了兩種(65+45)×5=65×5+45×5。和65×5+45×5=(65+45)×5。我把這兩種方式都板書上黑板上。教材上要求的是第一種,即把(65+45)×5寫在等式的左邊,是為了方便學(xué)生對乘法分配律的意義的理解。我認為,從乘法的意義這個角度上來說,意義的理解我們班級可以做到。既然是從意義出發(fā),那么兩種方式其實都是可以的。所以在用字母來表達時,我們班的同學(xué)也有了兩種的表達方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。我都板書在黑板上,只是在規(guī)范的那一道上面畫了個星,告訴學(xué)生,乘法分配律的表示一般性采用的是這一條。
三、練習(xí)中注意乘法分配律的變式。
乘法分配律的意義是用,是為了計算的簡便。所以,在練習(xí)中我注意讓學(xué)生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1)和74×20+74。一定要學(xué)生說清楚括號中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學(xué)生在完成想想做做第5題的時候,一大半的學(xué)生都沒有采用簡算的方法。哪怕他們在經(jīng)過了第四題的練習(xí)時也是一樣。
今天教學(xué)了運算律——乘法分配律,對于例題的解決,學(xué)生能列出不同的算式,45*5+65*5和(45+65)*5,通過各自的計算得出計算結(jié)果相同,然后把這兩條算式寫成等式45*5+65*5=(45+65)*5,學(xué)生還能用自己的語言表述自己對等式的理解:45個5加65個5也就是(45+65)個5,然后又讓學(xué)生再仿寫了幾個算式后讓學(xué)生觀察等式總結(jié)自己的發(fā)現(xiàn),學(xué)生會用字母表示出這一規(guī)律,但用語言表述有困難了。想想做做第1題只有幾個學(xué)生把第3小題填錯,其實包括后面的練習(xí)中,把A*C+B*C改寫成(A+B)*C的正確率要比把(A+B)*C改寫成A*C+B*C的正確率高,可能還是學(xué)生受以前:45個5加65個5也就是(45+65)個5的理解方法的限制而沒學(xué)會用自己的語言表述乘法分配律,從而也沒能真正掌握乘法分配律含義的緣故吧。想想做做第2題的第3小題74*(21+1)和74*21+74部分學(xué)生沒有發(fā)現(xiàn)它們是相等的,我讓認為相等的學(xué)生表述理由,學(xué)生能把算式改寫成74*21+74*1再運用乘法分配律變形成74*(21+1),學(xué)生理解后我補充77*99+77=□(□○□)讓學(xué)生填空,完成情況好多了,在拓展練習(xí)時補充了A*B+B=□(□○□)和A*B+B=□(□○□)讓學(xué)生進一步真正理解乘法分配律的意義。但學(xué)生在完成想想做做第5題時,學(xué)生多習(xí)慣列式48*3+48*2來計算,卻不能靈活運用所學(xué)知識列成(3+2)*48來計算,雖然運用乘法分配律進行簡便計算是下一課的學(xué)習(xí)內(nèi)容,但我也由此反思出我教學(xué)的不足之處,在例題教學(xué)時只關(guān)注了得出等式,卻忽略了讓學(xué)生比較等式兩邊的算式哪邊比較簡便。于是在第4題的算算比比中才補上了這一點。
四年級《乘法分配律》的教學(xué)反思14
本節(jié)課主要讓學(xué)生充分感知并歸納乘法分配律,理解其意義。教學(xué)中,我從解決實際問題(買衣服)引入,通過交流兩種解法,把兩個算式寫成一個等式,并找出它們的聯(lián)系。讓學(xué)生初步感知乘法分配律的基礎(chǔ)上再讓學(xué)生舉出幾組類似的算式,通過計算得出等式。在充分感知的基礎(chǔ)上引導(dǎo)學(xué)生比較這幾組等式,發(fā)現(xiàn)有什么規(guī)律?這里我化了一些時間,我發(fā)現(xiàn)學(xué)生在用語言文字敘述方面有些困難,新教材上也沒有要求,因此,只要學(xué)生意思說到即可,后來,我提了這樣一個問題,你能用自己喜歡的方式來表示你發(fā)現(xiàn)的規(guī)律嗎?學(xué)生立即活躍起來,紛紛用自己喜歡的方式來闡明自己發(fā)現(xiàn)的規(guī)律:有用字母的,有用符號的,大部分學(xué)生會說,沒問題。對于應(yīng)用這一乘法分配律進行后面的練習(xí)還可以。如:書上第55頁的第5題,學(xué)生都想到用簡便方法去列式計算。整節(jié)課,學(xué)生還是學(xué)的比較輕松的。
關(guān)于乘法分配律早在上學(xué)期和本冊教材的前幾個單元的練習(xí)題中就有所滲透,雖然在當(dāng)時沒有揭示,但學(xué)生已經(jīng)從乘法的意義角度初步進行了感知,以及初步體會了它可以使計算簡便。今天的教學(xué)就建立在這樣的基礎(chǔ)之上,上午第一節(jié)課我在自己班上,后來第二節(jié)課去聽了一根木頭老師的課,現(xiàn)在進行對比,談一談自己的感受:
首先,值得向一根木頭老師學(xué)習(xí)的是,學(xué)生的預(yù)習(xí)工作很到位。課前,學(xué)生就已經(jīng)解決了“想想做做”第3、4題,學(xué)生通過解決第三題用兩種方法求長方形的周長,既鞏固了舊知,而且將原來的認識提升了,從解決實際問題的角度進一步感受了乘法分配律。而第4題通過計算比較,突現(xiàn)了乘法分配律可以使計算簡便,體現(xiàn)了應(yīng)用價值。我在課前沒有安排這樣的預(yù)習(xí),因此課上的時間比較倉促。
其次,我在學(xué)生解決完例題的`問題后,還讓學(xué)生提了減法的問題,這樣做的目的是讓學(xué)生初步感受對于(a—b)×c=a×b—a×c這種類型的題也同樣適合,既擴展了學(xué)生的知識面,同時又為明天學(xué)習(xí)簡便運算鋪墊。
最后,我覺得在指導(dǎo)學(xué)生在觀察比較65×5+45×5和(65+45)×5的聯(lián)系和區(qū)別時,可以指導(dǎo)學(xué)生從數(shù)和運算符號兩個角度觀察,學(xué)生得出結(jié)論后,其實已經(jīng)感知到了算式的特點,然后讓學(xué)生用自己的方式創(chuàng)造相同類型的等式,可以是數(shù)、字母、圖形的等,值得欣慰的是學(xué)生能用各種方式正確表示出來,然后再揭示數(shù)學(xué)語言,學(xué)生的認知產(chǎn)生飛躍。
不足的是,學(xué)生很難用自己的語言表達乘法分配律的含義,小組交流時,有些同寫還是充當(dāng)旁觀者的角色,有待于教師科學(xué)地引導(dǎo)。
四年級《乘法分配律》的教學(xué)反思15
《乘法分配律》一課是四年級上冊第四單元的教學(xué)內(nèi)容,它相對于加法交換律、結(jié)合律,乘法交換律和結(jié)合律來說會比較抽象,學(xué)生較難于理解。因此把本課的教學(xué)重點定位為“探索并發(fā)現(xiàn)乘法分配律,理解乘法分配律的意義”,讓學(xué)生經(jīng)歷“觀察算式——仿寫算式——解釋規(guī)律——應(yīng)用規(guī)律”的過程。
一、比賽導(dǎo)入 激發(fā)探究欲望
課前創(chuàng)設(shè)比賽情境:老師能很快說出下面幾道題的得數(shù),你信嗎?不信的同學(xué)敢跟我比一比嗎?(出示: 28×70+72×70 (125+10)×8 34×101)在我既對又快的說出結(jié)果時,孩子們都很驚訝,于是我因勢利導(dǎo):剛才的比賽老師算得快,是因為老師有一個取勝的秘訣,它可以使計算簡便,你們想知道嗎?學(xué)完這節(jié)課,你就能發(fā)現(xiàn)其中的秘密。學(xué)生個個躍躍欲試,瞬間充滿探究的欲望,很好地激發(fā)了學(xué)生學(xué)習(xí)的興趣。
二、自主探索 發(fā)現(xiàn)規(guī)律
在解決“一共貼了多少塊磁磚?”中,學(xué)生列出了四個算式:3×10+5×10、4×8+6×8、(3+5)×10、(4+6)×8后,在讓學(xué)生觀察四個算式之后,先引導(dǎo)學(xué)生將四個算式進行分類并說明分類的標(biāo)準(zhǔn)。通過這個環(huán)節(jié),學(xué)生對于相等的兩個算式的'特征有了進一步的了解,知道將3×10+5×10和(3+5)×10分為一類,將4×8+6×8和(4+6)×8分為一類,是因為它們的數(shù)字都一樣,都是由3、5、10組成或是由4、6、8組成的,了解乘法分配律中有3個數(shù);如將3×10+5×10和將4×8+6×8分一類,將(3+5)×10和(4+6)×8分為一類的,則從中明白一邊都是兩個積相加,另一邊則是兩個數(shù)的和與一個數(shù)相乘。通過這個分類活動,讓學(xué)生自主發(fā)現(xiàn)規(guī)律,為理解乘法分配律做了很好的鋪墊。接著再讓學(xué)生仿寫算式,總結(jié)規(guī)律并解釋規(guī)律,最后再應(yīng)用規(guī)律揭示課前比賽中老師獲勝的奧秘。
三、錯因分析 防患未然
以往的教學(xué)經(jīng)驗告訴我,學(xué)生對于乘法分配律的運用經(jīng)常出錯,也很容易與結(jié)合律混在一起。為了防患于未然,在教學(xué)中創(chuàng)設(shè)了“小馬虎這樣做,你同意嗎?
(1)(6+30)×7 = 7×6+7×30
(2) 25×(4+60)= 25×4+60
(3) 16×5×8 = 16×5+16×8
(4) 15×3+15×7 = (15+15)×(3+7)”讓學(xué)生進行分析、判斷并修正。特別是第3題,讓學(xué)生對比乘法分配律和乘法結(jié)合律的數(shù)學(xué)模型,找出其中的區(qū)別,加以比較,從而發(fā)現(xiàn)模型左邊乘法結(jié)合律是兩個數(shù)的積,而乘法分配律是兩個數(shù)的和,而模型右邊乘法結(jié)合律是連乘的形式,而乘法分配律是兩個積相加的形式。這樣對比,加深對乘法分配律模型的認識和對其意義的理解。分析錯因后,還不忘讓學(xué)生說說:“你想對小馬虎說什么?”來提醒告誡學(xué)生,除了要養(yǎng)成認真細心的習(xí)慣外,還要運用好乘法分配律,注意分配律與結(jié)合律的區(qū)別,將錯誤扼制在搖籃里。
不足之處:雖然學(xué)生對于乘法分配律的理解比較到位,較好地達成了教學(xué)目標(biāo),但如能進行適時拓展,讓學(xué)生通過“兩個數(shù)的和與一個數(shù)相乘來聯(lián)想到兩個數(shù)的差與一個數(shù)相乘,兩個數(shù)的和除以一個數(shù)及兩個數(shù)的差除以一個數(shù)是否都可以應(yīng)用乘法分配律這個數(shù)學(xué)模型?”會使課堂更豐滿,更有深度。
四年級《乘法分配律》的教學(xué)反思16
教材提供了這樣一個主體圖:春季里,同學(xué)們開展植樹活動,一共有25個小組,每組里4人負責(zé)挖坑、種樹,2人負責(zé)抬水、澆樹。需要解決的問題是:一共有多少人參加植樹活動?學(xué)生會用兩種不同的方法分別列出算式,接著通過計算發(fā)現(xiàn),兩個算式可以用=連接,即25(4+2)=254+252,從而通過比較等號兩邊兩個算式的不同與相同,概括出乘法分配律。當(dāng)我在一個班按照此教學(xué)設(shè)計教學(xué)后,我發(fā)現(xiàn)效果并不理想,表現(xiàn)有兩點:
①有些學(xué)生只是機械的記憶了乘法分配律的公式,例如看到3544不能想到3540+354;
②由于沒有真正理解乘法分配律的內(nèi)涵,所以完全不能理解其逆應(yīng)用以及當(dāng)兩個數(shù)的'差乘一個數(shù)時應(yīng)用乘法分配律。如:他們認為6464+3664(64+36)64;265(105-5)=265105-2655。
針對此情況,我重新設(shè)計了教案。增加了一個問題:負責(zé)挖坑、種樹的同學(xué)比負責(zé)抬水、澆水的同學(xué)多多少人?這樣學(xué)生又列出另外兩個算式,通過計算后用等號連接: 25(4-2)=254-252,接下來,我引導(dǎo)學(xué)生觀察、對比兩組算式,充分地去發(fā)現(xiàn)相同點與不同點。這樣一來,促使了學(xué)生去尋找事物之間的聯(lián)系,抓住本質(zhì),尋找共同點,促進交流,順利地實現(xiàn)了自我構(gòu)建和知識創(chuàng)造。學(xué)生的發(fā)現(xiàn)自然也就更豐富、更有深度了:無論是兩個數(shù)的和還是兩個數(shù)的差去乘一位數(shù),都可以先把他們與這個數(shù)分別相乘,再相加或者再相減。此外,我還引導(dǎo)學(xué)生從右到左的觀察等式,嘗試用乘法的意義去理解乘法分配律,即:4個25加2個25就等于(4+2)個25,4個25減2個25就等于(4-2)個25,這樣幫助學(xué)生突破乘法分配律逆應(yīng)用這個教學(xué)難點。
我通過對兩個班不同的教學(xué)設(shè)計,感受到:認真鉆研教材,多動心思,深入挖掘教材中的寶貴資源,會使教材的內(nèi)涵更有廣度和深度,也為培養(yǎng)和發(fā)展學(xué)生思維的靈活性,提供了更廣闊的空間。
四年級《乘法分配律》的教學(xué)反思17
乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)生較難理解與敘述的定律。如何教學(xué)能使學(xué)生較好的理解乘法分配律的內(nèi)涵,并能正確的運用定律進行簡便運算呢?我做了一下幾點嘗試。
一、創(chuàng)設(shè)師生競賽,激發(fā)學(xué)習(xí)欲望。
上課教師先出示:(1)8×(125+11) (2)(100+1)×23
(3 )648×5+352×5
老師和同學(xué)們做一個比賽,王老師口算,你們用計算器算,看看誰能獲。
結(jié)果教師又快又對,學(xué)生都很奇怪,教師順勢導(dǎo)入:同學(xué)們都特別想知道在比賽過程中,學(xué)生用計算器都沒有老師口算得快的原因嗎?是因為老師又運用了乘法的一個法寶,知道了乘法的'又一個定律可以使運算簡便,你們想知道嗎?今天我們就來探究其中的奧秘。
這樣的導(dǎo)入讓學(xué)生充滿了求知的欲望,激發(fā)了學(xué)習(xí)的熱情。
二、設(shè)計思考問題,學(xué)生自主探究。
出示例題后,學(xué)生獨立解答,然后教師出示思考問題,學(xué)生自主探究。
討論:
1、這兩種方法有什么不同?兩個算式的結(jié)果如何?用什么符號連接?
2、那么等號連接的這兩個算式有什么特點和聯(lián)系呢?請同學(xué)們帶著老師給出的三個問題展開討論。(課件出示問題)生A:我發(fā)現(xiàn)左邊括號外的那個數(shù),寫到右邊都要乘兩次。
生B:兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結(jié)果不變。
整個教學(xué)過程通過學(xué)生觀察、比較、分析理解乘法分配律的含義,教師引導(dǎo)學(xué)生概括出乘法分配律的內(nèi)容。
三、練習(xí)有坡度,前后有呼應(yīng)。
在本課的練習(xí)設(shè)計上,我力求有針對性,有坡度,同時也注意知識的延伸。練習(xí)的形式多樣,課本上的填空題解決以后,設(shè)計了判斷題和練習(xí)題,把學(xué)生易出錯的問題提前預(yù)設(shè)好,而且通過練習(xí)讓學(xué)生明白乘法分配律也可以兩個數(shù)的差,也可以是三個數(shù)的和,使學(xué)生對乘法分配律的內(nèi)容得到進一步完整,也為后面利用乘法分配律進行簡算打下伏筆。為了讓學(xué)生初步感受乘法分配律能使一些計算簡便,我特意把開始和老師比賽的題目讓學(xué)生運用今天所學(xué)知識進行計算,學(xué)生非常有興趣,在練習(xí)中培養(yǎng)了學(xué)生分析、推理、概括的思維能力。
總之,在本堂課中新的教學(xué)理念有所體現(xiàn),是一節(jié)本色的數(shù)學(xué)課堂。但在具體的操作中還缺乏成熟的思考,自主探究環(huán)節(jié)對問題的設(shè)計不夠簡潔,還可以再做斟酌。實際分配律的揭示過程與教案設(shè)計順序有些出入,感覺效果沒有預(yù)想的好,上課時對于教案的熟悉程度還有待加強。
四年級《乘法分配律》的教學(xué)反思18
學(xué)生在前面的學(xué)習(xí)中已經(jīng)學(xué)習(xí)了一些有關(guān)運算律的知識,對加法交換律、結(jié)合律、乘法交換律、結(jié)合律有一定的了解和認識,這些都為本課的學(xué)習(xí)奠定了基礎(chǔ)。本課的教學(xué)環(huán)節(jié)和前面學(xué)習(xí)運算律的教學(xué)基本相似,所以學(xué)生也有一定的學(xué)習(xí)方法和經(jīng)驗,所以乘法分配律的歸納和揭示還是比較順利的'。我重點是結(jié)合練習(xí)幫助學(xué)生進一步的認識乘法分配律的意義以及它與其他運算律的區(qū)別。特別是對幾個數(shù)字的觀察和比較以及等式兩邊的式子分別表示的意義等,通過這樣的引導(dǎo),加深學(xué)生對乘法分配律含義的理解,為后面的簡便運算的學(xué)習(xí)奠定基礎(chǔ)。
相對于其他運算律的簡便運算,應(yīng)用乘法分配律進行簡便運算,學(xué)生在實際的運用方面還是有一定困難的。教學(xué)中我是分層進行教學(xué)的。首先安排的是最基本,學(xué)生直接根據(jù)乘法分配律就可以直接進行簡便運算。在這個環(huán)節(jié),我主要是通過練習(xí)加深學(xué)生對乘法分配律的理解和運用,特別是逆向的運用。接著,在練習(xí)環(huán)節(jié)進行一定的拓展和變化,通過觀察、比較等方式,引導(dǎo)學(xué)生發(fā)現(xiàn)算式間的聯(lián)系,從而能夠靈活的運用運算律。在這個環(huán)節(jié),我發(fā)現(xiàn)部分學(xué)生仍然是在逆向的運用上出現(xiàn)了一些問題。這可能也與學(xué)生的思維定勢有關(guān)系。
四年級《乘法分配律》的教學(xué)反思19
1、情境的創(chuàng)設(shè)激發(fā)了學(xué)生的計算熱情。
讓學(xué)生在生動具體的情境中學(xué)習(xí)數(shù)學(xué),這是新課標(biāo)倡導(dǎo)的新理念.我聯(lián)系學(xué)生的生活實際,創(chuàng)設(shè)了學(xué)生熟悉的購買家具的場景,配上我生動的語言敘述,一下子就把學(xué)生代入到了一個有數(shù)學(xué)味的問題情境中,吸引了所有學(xué)生的注意。緊接著的問題如果你是小紅,你想買什么家具呢?根據(jù)小紅家的需要,你們能提出哪些數(shù)學(xué)問題?更是激發(fā)了學(xué)生的思維,學(xué)生個個積極動腦,躍躍欲試。在學(xué)生充分提出各種問題的`基礎(chǔ)上,我選擇了有代表性的一個問題讓學(xué)生獨立解決,極大地激發(fā)了學(xué)生的計算熱情。這一環(huán)節(jié)的教學(xué),讓學(xué)生經(jīng)歷了因用而算、以算激用的過程,將算與用緊密結(jié)合。
2、多層的設(shè)計有利于學(xué)生數(shù)學(xué)模型的建立。
首先讓學(xué)生通過獨立計算,交流計算方法,敘述計算過程等一系列的筆算乘法的技能訓(xùn)練,形成一定的算理。然后通過比較124和2132這兩題,它們最大的區(qū)別是什么?在乘的時候,有什么不同呢?如果是四位數(shù)、五位數(shù)乘一位數(shù),你認為該怎么乘呢?這兩個問題的討論、交流,引導(dǎo)學(xué)生進行整理反思,讓學(xué)生能通過兩位數(shù)乘一位數(shù)遷移到三位數(shù)乘一位數(shù),進而自然聯(lián)想到四位數(shù)、五位數(shù)乘一位數(shù)的計算方法其實都是一樣的,從而幫助學(xué)生將零散的知識串起來,有利于學(xué)生數(shù)學(xué)模型的建立。
需要改進的地方是:在學(xué)生探索出筆算方法后,我因為擔(dān)心學(xué)生沒有聽懂,怕學(xué)生做錯,說錯,故而引導(dǎo)太細,學(xué)生的學(xué)習(xí)主動性調(diào)動的不夠。如果我能充分相信學(xué)生,大膽放手,讓學(xué)生獨立地去想,去做,去說,相信學(xué)生的表現(xiàn)會更出色。
四年級《乘法分配律》的教學(xué)反思20
這兩天學(xué)習(xí)乘法分配律,孩子們的普遍感覺是比乘法的交換律和結(jié)合律應(yīng)用起來難一些。作業(yè)中的錯誤也很多,主要錯在一下幾點:
1、78×(100+5)
=78×100+5…………這種錯誤在于學(xué)生沒有教好的理解
乘法分配律:括號外面的數(shù)要分別乘括號內(nèi)的兩個數(shù),再把兩個積相加。
2、85×99+85
=85×(99+85)…………這種錯誤的原因在于個別孩子
對式子中的數(shù)據(jù)理解不好,不明白加號后面的
85表示的是1個85,可以看成85×1。
3、104×25
=(100+4)×25
=104×25…………這種錯誤的原因在于有的孩子對乘法分配律的引用不熟練,變式之后又按照順序進行計算,回到了原式。
4、76×54+76×47-76
=76×(54+47)-76…………有這種做法的孩子屬于對乘法分配律的應(yīng)用不夠靈活,當(dāng)遇到部分積較多的時候,不能較好的應(yīng)用分配律進行簡便算。
5、25×32×125
=(25×4)+(8×125)…………個別學(xué)生在做題時有一種慣性,學(xué)完乘法分配律之后,所有的題目都用分配律進行計算,不能靈活的選用運算律進行簡便計算。
綜合學(xué)生出現(xiàn)的錯誤之處,可見大部分孩子對運算律能夠較
好的理解,只是在應(yīng)用時不能夠靈活的應(yīng)用。直接應(yīng)用規(guī)律進行簡便算的能準(zhǔn)確理解,而需要變式的題目則不能較好的應(yīng)用,也有個別孩子因為理解不清而不會應(yīng)用。根據(jù)學(xué)生的情況,我采用相應(yīng)的措施,以便讓孩子們真正理解,靈活應(yīng)用。
一、個別指導(dǎo)。
對分配律不理解的孩子,我進行個別的指導(dǎo)。具體是舉一些相關(guān)的實際問題,讓孩子用兩種不同的方法進行解題,在解題、比較的基礎(chǔ)上理解兩部分積表示的意義,理解括號外的數(shù)要分別乘括號內(nèi)兩個數(shù)的道理,這樣借助具體事例,形象的進行理解、概括,有助于學(xué)生對乘法分配律的掌握。
二、對比練習(xí)。
針對有的孩子把分配律和結(jié)合律混淆的情況,我設(shè)計針對性的練習(xí),讓孩子在練習(xí)中記性比較、分析,從而掌握。如:
25×3×17×4 25×3+17×25
比較兩個算式的不同之處,說說算是中分別有什么運算,運用什么運算律才能簡便計算,這樣在比較的過程中學(xué)生能夠慢慢區(qū)分乘法結(jié)合律與乘法分配律的不同,繼而再靈活應(yīng)用規(guī)律進行計算。
三、針對練習(xí)。
針對學(xué)生不能靈活應(yīng)用規(guī)律進行計算的問題,我設(shè)計針對性的練習(xí),讓孩子在練習(xí)中說說自己的想法,比一比怎么計算更加簡便,這樣在比較、練習(xí)的`過程中進一步掌握簡便計算的方法。
如:125×48
因為剛學(xué)過乘法分配律,學(xué)生在計算125×48時,也應(yīng)用分配律:125×40+125×8,針對這樣的情況,我讓學(xué)生再想一想還有沒有其它簡便計算的方法,引導(dǎo)學(xué)生用乘法結(jié)合律進行簡便計算:125×8×6,再比一比:哪種方法更簡便?這樣在比較的過程中引導(dǎo)學(xué)生體會:用簡便方法進行計算時,一定要先觀察題目中各個數(shù)的特點,根據(jù)題目的特點選擇合適的運算律進行簡便計算,這樣才能保證計算的簡便與正確。
通過對孩子錯因的分析與相應(yīng)的指導(dǎo)、練習(xí),孩子們對乘法的運算律理解掌握也越來越好,作業(yè)的錯誤明顯減少。看來,只要我們善于分析、引導(dǎo),只要我們對孩子有耐心、有信心,孩子們就一定能夠?qū)W會、學(xué)好!
【四年級《乘法分配律》的教學(xué)反思】相關(guān)文章:
《乘法分配律》教學(xué)反思12-22
《乘法分配律》教學(xué)反思10-10
乘法分配律教學(xué)反思11-11
乘法分配律教學(xué)反思04-13
數(shù)學(xué)乘法分配律教學(xué)反思03-24
《乘法分配律》教學(xué)反思15篇02-15
乘法分配律教學(xué)反思三篇03-07