初三上冊數學教學計劃

時間:2020-12-16 13:32:14 教學計劃 我要投稿

初三上冊數學教學計劃范文錦集七篇

  人生天地之間,若白駒過隙,忽然而已,我們迎來了新的學習生活,是不是需要好好寫一份教學計劃呢?以使教學工作順利有序的進行,提高自己的教學質量,以下是小編精心整理的初三上冊數學教學計劃7篇,希望能夠幫助到大家。

初三上冊數學教學計劃范文錦集七篇

初三上冊數學教學計劃 篇1

  一、學情分析:

  新學期,根據九年級合班的實際,首先是先摸清底子,穩住學生,然后根據學生學情分布情況,重新劃分學習小組,對新來的學生,做好各方面的工作,使他們迅速適應新環境,然后,盡快幫他們找到新的學習榜樣和新學伴,幫他們樹立競爭意識和發展意識以及創新意識,鼓勵大家在新學期,獲得更大的進步,取得更大的發展。

  二、教學內容

  本學期所教九年級數學包括第二十一章《二次根式》,第二十二章《一元二次方程》,第二十三章《旋轉》,第二十四章《圓》。第二十五章《概率初步》。代數三章,幾何兩章。而且本學期要授完下冊第二十七章內容。

  三、教學目標:

  本學期的主要教學任務目標:

  (1)根據學情,調整好教學進度,優化學習方法,激活知識積累。

  (2)形成知識網絡,解決實際問題。

  (3)強化規范訓練,提高應考能力。

  (4)關注學生特長需求,做好學生心理疏導。

  具體的說,教育學生掌握基礎知識與基本技能,培養學生的邏輯思維能力、運算能力、空間觀念和解決簡單實際問題的能力,使學生逐步學會正確、合理地進行運算,逐步學會觀察分析、綜合、抽象、概括。會用歸納演繹、類比進行簡單的推理。使學生懂得數學來源與實踐又反過來作用于實踐。提高學習數學的興趣,逐步培養學生具有良好的學習習慣,實事求是的態度。頑強的學習毅力和獨立思考、探索的新思想。培養學生應用數學知識解決問題的能力。

  知識技能目標:

  掌握二次根式的概念、性質及計算;會解一元二次方程;理解旋轉的基本性質;掌握圓及與圓有關的概念、性質;理解概率在生活中的應用。

  過程方法目標:

  培養學生的觀察、探究、推理、歸納的能力,發展學生合情推理能力、邏輯推理能力和推理認證表達能力,提高知識綜合應用能力。

  態度情感目標:

  進一步感受數學與日常生活密不可分的聯系,同時對學生進行辯證唯物主義世界觀教育。

  第一學期九年級數學教學進度表

  周次時間教學內容備注

  第一周9月1日—9月6日第二十一章二次根式21.1

  第二周9月7日—9月13日21.221.3

  第三周9月14日—9月20日21.3數學活動小結

  第四周9月21日—9月27日第二十二章一元一次方程22.122.2

  第五周9月28日—10月4日22.210月1日—7日放假

  第六周10月5日—10月11日22.3

  第七周10月12日—10月18日第二十三章旋轉23.123.2

  第八周10月19日—10月25日23.3課題學習數學活動小結

  第九周10月26日—11月1日第二十四章圓24.124.226日重陽節

  第十周11月2日—11月8日24.324.4數學活動小結

  第十一周11月9日—11月15日期中質量檢測

  第十一周11月16日—11月22日試卷講評

  第十二周11月23日—11月29日第二十五章概率初步25.1

  第十三周11月30日—12月6日25.2

  第十七周12月28日—1月3日26.31月1日—3日放假

  第十八周1月4日—1月10日第二十七章相似27.127.2

  第十九周1月11日—17日27.227.3

  第二十周1月18日—1月24日期末復習

  第二十一周1月25日—1月31日期末質量檢測

初三上冊數學教學計劃 篇2

  一、基本情況:

  本學期是初中學習的關鍵時期本學期我擔任初三年級三(5、6)兩個班的數學教學工作,是新課程標準實驗教材,如何用新理念使用好新課程標準教材?如何在教學中貫徹新課標精神?這要求在教學過程中的創新意識、引導學生進行思考問題方式都必須不同與以往的教學。因此,在完成教學任務的同時,必須盡可能性的創設情景,讓學生經歷探索、猜想、發現的過程。并結合教學內容和學生實際,把握好重點、難點。樹立素質教育觀念,以培養全面發展的高素質人才為目標,面向全體學生,使學生在德、智、體、美、勞等諸方面都得到發展。為做好本學期的教育教學工作,特制定本計劃。

  二、指導思想:

  初三數學是以黨和國家的教育教學方針為指導,按照九年義務教育數學課程標準來實施的,其目的是教書育人,使每個學生都能夠在此數學學習過程中獲得最適合自己的發展。通過初三數學的教學,提供參加生產和進一步學習所必需的數學基礎知識與基本技能,進一步培養學生的運算能力、思維能力和空間想象能力,能夠運用所學知識解決簡單的實際問題,培養學生的數學創新意識、良好個性品質以及初步的唯物主義觀。

  三、教學內容:

  本學期所教初三數學包括第一章證明(二),第二章一元二次方程,第三章證明(三),第四章視圖與投影,第五章反比例函數,第六章頻率與概率。其中證明(二),證明(三),視圖與投影,這三章是與幾何圖形有關的。一元二次方程,反比例函數這兩章是與數及數的運用有關的。頻率與概率則是與統計有關。

  四、教學目的:

  在新課方面通過講授《證明(二)》和《證明(三)》的有關知識,使學生經歷探索、猜測、證明的過程,進一步發展學生的推理論證能力,并能運用這些知識進行論證、計算、和簡單的作圖。進一步掌握綜合法的證明方法,能證明與三角形、平行四邊形、等腰梯形、矩形、菱形、以及正方形等有關的性質定理及判定定理,并能夠證明其他相關的結論。在《視圖與投影》這一章通過具體活動,積累數學活動經驗,進一步增強學生的動手能力發展學生的空間思維。在《頻率與概率》這一章》讓學生理解頻率與概率的關頻率與概率系進一步體會概率是描述隨機現象的數學模型。

  在《一元二次方程》和《反比例函數》這兩章,讓學生了解一元二次方程的各種解法,并能運用一元二次方程和函數解決一些數學問題逐步提高觀察和歸納分析能力,體驗數學結合的數學方法。同時學會對知識的歸納、整理、和運用。從而培養學生的思維能力和應變能力。

  五、教學重點、難點

  本冊教材包括幾幾何何部分《證明(二)》,《證明(三)》,《視圖與投影》。代婁部分《一元二次方程》,《反比例函數》。以及與統計有關的《頻率與概率》。《證明(二)》,《證明(三)》的重點是1、要求學生掌握證明的基本要求和方法,學會推理論證;2、探索證明的思路和方法,提倡證明的多樣性。難點是1、引導學生探索、猜測、證明,體會證明的必要性;2、在教學中滲透如歸納、類比、轉化等數學思想。《視圖與投影》和重點是通過學習和實踐活動判斷簡單物體的三種視圖,并能根據三種圖形描述基本幾何體或實物原型,實現簡單物體與其視圖之間的相互轉化。難點是理解平行投影與中心投影,明確視點、視線和盲區的內容。《一元二次方程》,《反比例函數》的重點是1、掌握一元二次方程的多種解法;2、會畫出反比例函數的圖像,并能根據圖像和解析式探索和理解反比例函數的性質。難占是1、會運用方程和函數建立數學模型,鼓勵學生進行探索和交流,倡導解決問題策略的多樣化。《頻率與概率》的重點是通過實驗活動,理解事件發生的頻率與概率之間的關系,體會概率是描述隨機現象的的數學模型,體會頻率的穩定性。難點是注重素材的真實性、科學性、以及來源渠道的多樣性,理解試驗頻率穩定于理論概率,必須借助于大量重復試驗,從而提示概率與統計之間的內存聯系。

  六、教學措施:

  針對上述情況,我計劃在即將開始的學年教學工作中采取以下幾點措施:

  1、新課開始前,用一個周左右的時間簡要復習上學期的所有內容,特別是幾何部分。

  2、教學過程中盡量采取多鼓勵、多引導、少批評的教育方法。

  3、教學速度以適應大多數學生為主,盡量兼顧后進生,注重整體推進。

  4、新課教學中涉及到舊知識時,對其作相應的復習回顧。

  5、復習階段多讓學生動腦、動手,通過各種習題、綜合試題和模擬試題的訓練,使學生逐步熟悉各知識點,并能熟練運用。

  除了以上計劃外,我還將預計開展轉化個別后進生工作,教學中注重數學理論與社會實踐的聯系,鼓勵學生多觀察、多思考實際生活中蘊藏的數學問題,逐步培養學生運用書本知識解決實際問題的能力,重視實習作業。

初三上冊數學教學計劃 篇3

  一、基本情況:

  本學期我擔任九年級159班的數學教學工作。共有學生48人,我深感教育教學的壓力很大,在本學期的數學教學中務必精耕細作。使用的教材是新課程標準實驗教材《湘教版數學九年級上冊》,如何用新理念使用好新課程標準教材?如何在教學中貫徹新課標精神?這要求在教學過程中具有創新意識、每一個教學環節都必須巧做安排。為此,特制定本計劃。

  二、指導思想:

  以黨和國家的教育教學方針為指導,按照九年義務教育數學課程標準來實施,其目的是教書育人,使每個學生都能夠在數學學習過程中獲得最適合自己的發展。通過初三數學的教學,提供參加生產實踐和進一步學習所必需的數學基礎知識與基本技能,進一步培養學生的運算能力、思維能力和空間想象能力,能夠運用所學知識解決實際問題,培養學生的數學創新意識、良好個性品質以及初步的唯物主義觀。

  三、教學內容:

  本學期所教初三數學包括第一章一元二次方程,第二章命題定理與證明,第三章 解直角三角形,第四章 相似形,第五章概率的計算。

  四、教學目的:

  教育學生掌握基礎知識與基本技能,培養學生的邏輯思維能力、運算能力、空間觀念和解決簡單實際問題的能力,使學生逐步學會正確、合理地進行運算, 逐步學會觀察分析、綜合、抽象、概括。會用歸納演繹、類比進行簡單的推理。使學生懂得數學來源與實踐又反過來作用于實踐。提高學習數學的興趣,逐步培養學 生具有良好的學習習慣,實事求是的態度。頑強的學習毅力和獨立思考、探索的新思想。培養學生應用數學知識解決問題的能力。

  知識技能目標:掌握一元二次方程的有關概念;會解一元二次方程;能建立一元二次方程的模型解決實際問題;理解命題、定理、證明等概念;能正確寫出證明;掌握銳角三角函數的性質;理解直角三角形的性質;能運用三角函數及勾股定理解直角三角形;掌握相似三角形的概念、性質及判定方法; 掌握概率的計算方法;理解概率在生活中的應用。

  過程方法目標:培養學生的觀察、探究、推理、歸納的能力,發展學生合情推理能力、邏輯推理能力和推理認證表達能力,提高知識綜合應用能力。

  態度情感目標:進一步感受數學與日常生活密不可分的聯系,同時對學生進行辯證唯物主義世界觀教育。

  通過講授證明的有關知識,使學生經歷探索、猜測、證明的過程,進一步發展學生的推理論證能力,并能運用這些知識進行論證、計算、和簡單的作圖。進

  一步掌握綜合法的證明方法,能證明與三角形、平行四邊形、等腰梯形、矩形、菱形、以及正方形等有關的性質定理及判定定理,并能夠證明其他相關的結論。在解直角三角形和相似圖形這兩章時,通過具體活動,積累數學活動經驗,進一步增強學生的動手能力發展學生的空間思維。在教學概率的計算時讓學生進一步體會概率是描述隨機現象的數學模型。

  在教學一元二次方程這一章時,讓學生了解一元二次方程的各種解法,并能運用一元二次方程和函數解決一些數學問題逐步提高觀察和歸納分析能力,體驗數學結合的數學方法。同時學會對知識的歸納、整理、和運用。從而培養學生的思維能力和應變能力。

  五、教學重點、難點

  《一元二次方程》的重點是1、掌握一元二次方程的多種解法;2、列一元二次方程解應用題。難占是1、會運用方程和函數建立數學模型,鼓勵學生進行探索和交流,倡導解決問題策略的多樣化。《命題定理與證明》的重點是1、要求學生掌握證明的基本要求和方法,學會推理論證;2、探索證明的思路和方法,提倡證明的多樣性。難點是1、引導學生探索、猜測、證明,體會證明的必要性;

  2、在教學中滲透如歸納、類比、轉化等數學思想。《解直角三角形》的重點是通過學習和實踐活動探索銳角三角函數,在直角三角形中根據已知的邊與角求出未知的邊與角。難點是運用直角三角形的有關知識解決實際問題。《相似圖形》的重點是相似三角形的性質與判定。難點是綜合運用三角形、四邊形等知識進行推理論證,正確寫出證明。《概率的計算》的重點是通過實驗活動,理解事件發生的頻率與概率之間的關系,體會概率是描述隨機現象的的數學模型,體會頻率的穩定性,掌握概率的計算方法。難點是注重素材的真實性、科學性、以及來源渠道的多樣性,理解試驗頻率穩定于理論概率,必須借助于大量重復試驗,從而提示概率與統計之間的內存聯系。

  六、教學措施:

  1、認真研讀新課程標準,鉆研新教材,根據新課程標準及教材適度安排教學內容,認真上課,批改作業,認真輔導,認真制作測試試卷。

  2、激發學生的興趣,給學生介紹數學家,數學史,介紹相應的數學趣題,給出數學課外思考題,激發學生的興趣。

  3、引導學生積極參與知識的構建,營造自主、探究、合作、交流、分享發現快樂的課堂。

  4、引導學生積極歸納解題規律,引導學生一題多解,多解歸一,培養學生透過現象看本質的能力,這是提高學生素質的根本途徑之一,培養學生的發散思維,讓學生處于一種思如泉涌的狀態。

  5、培養學生良好的學習習慣,陶行知說:教育就是培養習慣,有助于學生穩步提高學習成績,發展學生的非智力因素,彌補智力上的不足。

  6、教學中注重數學理論與社會實踐的聯系,鼓勵學生多觀察、多思考實際生活中蘊藏的數學問題,逐步培養學生運用書本知識解決實際問題的能力,重視實習作業。指導成立課外興趣小組,開展豐富多彩的課外活動,帶動班級學生學習數學,同時發展這一部分學生的特長。

  7、開展分層教學,布置作業設置a、b、c三類分層布置分別適合于差、中、好三類學生,課堂上的提問照顧好各個層次的學生,使他們都得到發展。

  8、把輔優補潛工作落到實處,進行個別輔導。

初三上冊數學教學計劃 篇4

  一、基本情況:

  本學期是初中學習的關鍵時期本學期我擔任初三年級三(5、6)兩個班的數學教學工作,是新課程標準實驗教材,如何用新理念使用好新課程標準教材?如何在教學中貫徹新課標精神?這要求在教學過程中的創新意識、引導學生進行思考問題方式都必須不同與以往的教學。因此,在完成教學任務的同時,必須盡可能性的創設情景,讓學生經歷探索、猜想、發現的過程。并結合教學內容和學生實際,把握好重點、難點。樹立素質教育觀念,以培養全面發展的高素質人才為目標,面向全體學生,使學生在德、智、體、美、勞等諸方面都得到發展。為做好本學期的教育教學工作,特制定本計劃。

  一、指導思想:

  初三數學是以黨和國家的教育教學方針為指導,按照九年義務教育數學課程標準來實施的,其目的是教書育人,使每個學生都能夠在此數學學習過程中獲得最適合自己的發展。通過初三數學的教學,提供參加生產和進一步學習所必需的數學基礎知識與基本技能,進一步培養學生的運算能力、思維能力和空間想象能力,能夠運用所學知識解決簡單的實際問題,培養學生的數學創新意識、良好個性品質以及初步的唯物主義觀。

  二、教學內容:

  本學期所教初三數學包括第一章證明(二),第二章一元二次方程,第三章證明(三),第四章視圖與投影,第五章反比例函數,第六章頻率與概率。其中證明(二),證明(三),視圖與投影,這三章是與幾何圖形有關的。一元二次方程,反比例函數這兩章是與數及數的運用有關的。頻率與概率則是與統計有關。

  四、教學目的:

  在新課方面通過講授《證明(二)》和《證明(三)》的有關知識,使學生經歷探索、猜測、證明的過程,進一步發展學生的推理論證能力,并能運用這些知識進行論證、計算、和簡單的作圖。進一步掌握綜合法的證明方法,能證明與三角形、平行四邊形、等腰梯形、矩形、菱形、以及正方形等有關的性質定理及判定定理,并能夠證明其他相關的結論。在《視圖與投影》這一章通過具體活動,積累數學活動經驗,進一步增強學生的動手能力發展學生的空間思維。在《頻率與概率》這一章》讓學生理解頻率與概率的關頻率與概率系進一步體會概率是描述隨機現象的數學模型。

  在《一元二次方程》和《反比例函數》這兩章,讓學生了解一元二次方程的各種解法,并能運用一元二次方程和函數解決一些數學問題逐步提高觀察和歸納分析能力,體驗數學結合的數學方法。同時學會對知識的歸納、整理、和運用。從而培養學生的思維能力和應變能力。

  五、教學重點、難點

  本冊教材包括幾幾何何部分《證明(二)》,《證明(三)》,《視圖與投影》。代婁部分《一元二次方程》,《反比例函數》。以及與統計有關的《頻率與概率》。《證明(二)》,《證明(三)》的重點是1、要求學生掌握證明的基本要求和方法,學會推理論證;2、探索證明的思路和方法,提倡證明的多樣性。難點是1、引導學生探索、猜測、證明,體會證明的必要性;2、在教學中滲透如歸納、類比、轉化等數學思想。《視圖與投影》和重點是通過學習和實踐活動判斷簡單物體的三種視圖,并能根據三種圖形描述基本幾何體或實物原型,實現簡單物體與其視圖之間的相互轉化。難點是理解平行投影與中心投影,明確視點、視線和盲區的內容。《一元二次方程》,《反比例函數》的重點是1、掌握一元二次方程的多種解法;2、會畫出反比例函數的圖像,并能根據圖像和解析式探索和理解反比例函數的性質。難占是1、會運用方程和函數建立數學模型,鼓勵學生進行探索和交流,倡導解決問題策略的多樣化。《頻率與概率》的重點是通過實驗活動,理解事件發生的頻率與概率之間的關系,體會概率是描述隨機現象的的數學模型,體會頻率的穩定性。難點是注重素材的真實性、科學性、以及來源渠道的多樣性,理解試驗頻率穩定于理論概率,必須借助于大量重復試驗,從而提示概率與統計之間的內存聯系。

  六、教學措施:

  針對上述情況,我計劃在即將開始的學年教學工作中采取以下幾點措施:

  1、新課開始前,用一個周左右的時間簡要復習上學期的所有內容,特別是幾何部分。

  2、教學過程中盡量采取多鼓勵、多引導、少批評的教育方法。

  3、教學速度以適應大多數學生為主,盡量兼顧后進生,注重整體推進。

  4、新課教學中涉及到舊知識時,對其作相應的復習回顧。

  5、復習階段多讓學生動腦、動手,通過各種習題、綜合試題和模擬試題的訓練,使學生逐步熟悉各知識點,并能熟練運用。

初三上冊數學教學計劃 篇5

  基本情況:

  本學期是初中學習的關鍵時期本學期我擔任初三三年級(5、6)兩個班的數學教學工作,是新課程標準實驗教材,如何用新理念使用好新課程標準教材?如何在教學中貫徹新課標精神?這要求在教學過程中的創新意識、引導學生進行思考問題方式都必須不同與以往的教學。因此,在完成教學任務的同時,必須盡可能性的創設情景,讓學生經歷探索、猜想、發現的過程。并結合教學內容和學生實際,把握好重點、難點。樹立素質教育觀念,以培養全面發展的高素質人才為目標,面向全體學生,使學生在德、智、體、美、勞等諸方面都得到發展。為做好本學期的教育教學工作,特制定本計劃。

  一、指導思想:

  初三數學是以黨和國家的教育教學方針為指導,按照九年義務教育數學課程標準來實施的,其目的是教書育人,使每個學生都能夠在此數學學習過程中獲得最適合自己的發展。通過初三數學的教學,提供參加生產和進一步學習所必需的數學基礎知識與基本技能,進一步培養學生的運算能力、思維能力和空間想象能力,能夠運用所學知識解決簡單的實際問題,培養學生的數學創新意識、良好個性品質以及初步的唯物主義觀。

  二、教學內容:

  本學期所教初三數學包括第一章證明(二),第二章一元二次方程,第三章證明(三),第四章視圖與投影,第五章反比例函數,第六章頻率與概率。其中證明(二),證明(三),視圖與投影,這三章是與幾何圖形有關的。一元二次方程,反比例函數這兩章是與數及數的運用有關的。頻率與概率則是與統計有關。

  四、教學目的:

  在新課方面通過講授《證明(二)》和《證明(三)》的有關知識,使學生經歷探索、猜測、證明的過程,進一步發展學生的推理論證能力,并能運用這些知識進行論證、計算、和簡單的作圖。進一步掌握綜合法的證明方法,能證明與三角形、平行四邊形、等腰梯形、矩形、菱形、以及正方形等有關的性質定理及判定定理,并能夠證明其他相關的結論。在《視圖與投影》這一章通過具體活動,積累數學活動經驗,進一步增強學生的動手能力發展學生的空間思維。在《頻率與概率》這一章》讓學生理解頻率與概率的關頻率與概率系進一步體會概率是描述隨機現象的數學模型。

  在《一元二次方程》和《反比例函數》這兩章,讓學生了解一元二次方程的各種解法,并能運用一元二次方程和函數解決一些數學問題逐步提高觀察和歸納分析能力,體驗數學結合的數學方法。同時學會對知識的歸納、整理、和運用。從而培養學生的思維能力和應變能力。

  五、教學重點、難點

  本冊教材包括幾幾何何部分《證明(二)》,《證明(三)》,《視圖與投影》。代婁部分《一元二次方程》,《反比例函數》。以及與統計有關的《頻率與概率》。《證明(二)》,《證明(三)》的重點是1、要求學生掌握證明的基本要求和方法,學會推理論證;2、探索證明的思路和方法,提倡證明的多樣性。難點是1、引導學生探索、猜測、證明,體會證明的必要性;2、在教學中滲透如歸納、類比、轉化等數學思想。《視圖與投影》和重點是通過學習和實踐活動判斷簡單物體的三種視圖,并能根據三種圖形描述基本幾何體或實物原型,實現簡單物體與其視圖之間的相互轉化。難點是理解平行投影與中心投影,明確視點、視線和盲區的內容。《一元二次方程》,《反比例函數》的重點是1、掌握一元二次方程的多種解法;2、會畫出反比例函數的圖像,并能根據圖像和解析式探索和理解反比例函數的性質。難占是1、會運用方程和函數建立數學模型,鼓勵學生進行探索和交流,倡導解決問題策略的多樣化。《頻率與概率》的重點是通過實驗活動,理解事件發生的頻率與概率之間的關系,體會概率是描述隨機現象的的數學模型,體會頻率的穩定性。難點是注重素材的真實性、科學性、以及來源渠道的多樣性,理解試驗頻率穩定于理論概率,必須借助于大量重復試驗,從而提示概率與統計之間的.內存聯系。

  六、教學措施:

  針對上述情況,我計劃在即將開始的學年教學工作中采取以下幾點措施:

  1、新課開始前,用一個周左右的時間簡要復習上學期的所有內容,特別是幾何部分。

  2、教學過程中盡量采取多鼓勵、多引導、少批評的教育方法。

  3、教學速度以適應大多數學生為主,盡量兼顧后進生,注重整體推進。

  4、新課教學中涉及到舊知識時,對其作相應的復習回顧。

  5、復習階段多讓學生動腦、動手,通過各種習題、綜合試題和模擬試題的訓練,使學生逐步熟悉各知識點,并能熟練運用。

初三上冊數學教學計劃 篇6

  一、基本情況:

  本學期是初中學習的關鍵時期本學期我擔任初三年級三(5、6)兩個班的數學教學工作,是新課程標準實驗教材,如何用新理念使用好新課程標準教材?如何在教學中貫徹新課標精神?這要求在教學過程中的創新意識、引導學生進行思考問題方式都必須不同與以往的教學。因此,在完成教學任務的同時,必須盡可能性的創設情景,讓學生經歷探索、猜想、發現的過程。并結合教學內容和學生實際,把握好重點、難點。樹立素質教育觀念,以培養全面發展的高素質人才為目標,面向全體學生,使學生在德、智、體、美、勞等諸方面都得到發展。為做好本學期的教育教學工作,特制定本計劃。

  二、指導思想:

  初三數學是以黨和國家的教育教學方針為指導,按照九年義務教育數學課程標準來實施的,其目的是教書育人,使每個學生都能夠在此數學學習過程中獲得最適合自己的發展。通過初三數學的教學,提供參加生產和進一步學習所必需的數學基礎知識與基本技能,進一步培養學生的運算能力、思維能力和空間想象能力,能夠運用所學知識解決簡單的實際問題,培養學生的數學創新意識、良好個性品質以及初步的唯物主義觀。

  三、教學內容:

  本學期所教初三數學包括第一章 證明(二),第二章 一元二次方程,第三章 證明(三),第四章 視圖與投影,第五章 反比例函數,第六章 頻率與概率。其中證明(二),證明(三),視圖與投影,這三章是與幾何圖形有關的。一元二次方程,反比例函數 這兩章是與數及數的運用有關的。頻率與概率 則是與統計有關。

  四、教學目的:

  在新課方面通過講授《證明(二)》和《證明(三)》的有關知識,使學生經歷探索、猜測、證明的過程,進一步發展學生的推理論證能力,并能運用這些知識進行論證、計算、和簡單的作圖。進一步掌握綜合法的證明方法,能證明與三角形、平行四邊形、等腰梯形、矩形、菱形、以及正方形等有關的性質定理及判定定理,并能夠證明其他相關的結論。在《視圖與投影》這一章通過具體活動,積累數學活動經驗,進一步增強學生的動手能力發展學生的空間思維。在《頻率與概率》這一章》讓學生理解頻率與概率的關頻率與概率系進一步體會概率是描述隨機現象的數學模型。

  在《一元二次方程》和《反比例函數》這兩章,讓學生了解一元二次方程的各種解法,并能運用一元二次方程和函數解決一些數學問題逐步提高觀察和歸納分析能力,體驗數學結合的數學方法。同時學會對知識的歸納、整理、和運用。從而培養學生的思維能力和應變能力。

  五、 教學重點、難點

  本冊教材包括幾幾何何部分《證明(二)》,《證明(三)》,《視圖與投影》。代婁部分《一元二次方程》, 《反比例函數》。以及與統計有關的《頻率與概率》。

  《證明(二)》,《證明(三)》的重點:

  1、要求學生掌握證明的基本要求和方法,學會推理論證;

  2、探索證明的思路和方法,提倡證明的多樣性。

  難點:

  1、引導學生探索、猜測、證明,體會證明的必要性;

  2、在教學中滲透如歸納、類比、轉化等數學思想。《視圖與投影》和重點是通過學習和實踐活動判斷簡單物體的三種視圖,并能根據三種圖形描述基本幾何體或實物原型,實現簡單物體與其視圖之間的相互轉化。難點是理解平行投影與中心投影,明確視點、視線和盲區的內容。

  《一元二次方程》,《反比例函數》的重點:

  1、掌握一元二次方程的多種解法;

  2、會畫出反比例函數的圖像,并能根據圖像和解析式探索和理解反比例函數的性質。

  難點:

  1、會運用方程和函數建立數學模型,鼓勵學生進行探索和交流,倡導解決問題策略的多樣化。《頻率與概率》的重點是通過實驗活動,理解事件發生的頻率與概率之間的關系,體會概率是描述隨機現象的的數學模型,體會頻率的穩定性。

  2、注重素材的真實性、科學性、以及來源渠道的多樣性,理解試驗頻率穩定于理論概率,必須借助于大量重復試驗,從而提示概率與統計之間的內存聯系。

  六、教學措施:

  針對上述情況,我計劃在即將開始的學年教學工作中采取以下幾點措施:

  1、新課開始前,用一個周左右的時間簡要復習上學期的所有內容,特別是幾何部分。

  2、教學過程中盡量采取多鼓勵、多引導、少批評的教育方法。

  3、教學速度以適應大多數學生為主,盡量兼顧后進生,注重整體推進。

  4、新課教學中涉及到舊知識時,對其作相應的復習回顧。

  5、復習階段多讓學生動腦、動手,通過各種習題、綜合試題和模擬試題的訓練,使學生逐步熟悉各知識點,并能熟練運用。

初三上冊數學教學計劃 篇7

  教學目標:

  1.知識與技能:

  (1)能證明等腰梯形的性質和判定定理

  (2)會利用這些定理計算和證明一些數學問題

  2.過程與方法:

  通過證明等腰梯形的性質和判定定理,體會數學中轉化思想方法的應用。

  3.情感態度與價值觀:

  通過定理的證明,體會證明方法的多樣化,從而提高學生解決幾何問題的能力。

  重點、難點:

  重點:等腰梯形的性質和判定

  難點:如何應用等腰梯形的性質和判定解決具體問題。

  教學過程

  (一)知識梳理:

  知識點1:等腰梯形的性質1

  (1)文字語言:等腰梯形同一底上的兩底角相等。

  (2)數學語言:

  在梯形ABCD中

  ∵AD∥BC,AB=CD

  ∴∠B=∠C

  ∠A=∠D(等腰梯形同一底上的兩個底角相等)

  (3)本定理的作用:在梯形中常用的添加輔助線——平移腰,可以把梯形化歸為一個平行四邊形和一個等腰三角形;從而利用平行四邊形及等腰三角形的有關性質解決有關問題。

  知識點2:等腰梯形的性質2

  (1)文字語言:等腰梯形的兩條對角線相等

  (2)數學語言:

  在梯形ABCD中

  ∵AD∥BC,AB=DC

  ∴AC=BD(等腰梯形對角線相等)

  (3)本定理的作用:利用等腰梯形的性質證明線段相等,以及平移其中一條對角線化梯形為一個平行四邊形和一個等腰三角形從而解決有關線段的相等和垂直。

  知識點3:等腰梯形的判定

  (1)文字語言:在同一底上的兩個角相等的梯形是等腰梯形。

  (2)數學語言:在梯形ABCD中∵∠B=∠C

  ∴梯形ABCD是等腰梯形(同底上的兩個角相等的梯形是等腰梯形)

  (3)本定理的作用:在梯形中常用添加輔助線——補全三角形把原來的梯形化為兩個三角形

  (4)說明:

  ①判定一個梯形是等腰梯形通常有兩種方法:定義法和定理法。

  ②判定一個梯形是等腰梯形一般步驟:先判定四邊形是梯形,然后再判定“兩腰相等”或“同一底上的兩個角相等”來判定它是等腰梯形。

  【典型例題】

  例1. 我們在研究等腰梯形時,常常通過作輔助線將等腰梯形轉化為三角形,然后用三角形的知識來解決等腰梯形的問題。

  (1)在下面4個等腰梯形中,分別作出常用的4種輔助線(作圖工具不限)

  (2)在(1)的條件下,若AC⊥BD,DE⊥BC于點E,試確定線段DE與AD,BC之間的數量關系。并證明你的結論。

  解:(1)略。

  (2)DE=(AD+BC)

  過D作DF∥AC交BC延長線于點F

  ∵AD∥BC,∴四邊形ACFD是平行四邊形

  ∴AD=CF, AC=DF

  ∵AC=BD

  ∴BD=DF

  又∵AC⊥BD,∴BD⊥DF即△BDF為等腰直角三角形

  ∵DE⊥BF,則DE=BF,

  ∴DE=(BC+CF)=(BC+AD)

  例2. 如圖,鐵路路基橫斷面為等腰梯形ABCD,已知路基AB長6m, 斜坡BC與下底CD的夾角為60°,路基高AE為,求下底CD的寬。

  解:過點B作BF⊥CD于F

  ∵四邊形ABCD是等腰梯形

  ∴BC=AD

  ∵BF=AE,BF⊥CD,AE⊥CD

  ∵Rt△BCF≌Rt△ADE

  在Rt△BCF中,∠C=60°

  ∴∠CBF=30°

  ∴CF=BC即BC=2CF

  ∴BC2=CF2+BF2

  即∴CF=2

  ∵AB∥CD,BF⊥CD,AE⊥CD

  ∴四邊形ABFE是矩形

  ∴EF=AB=6m

  ∴CD=DE+EF+CF=AB+2CF=6+2×2=10(m)

  例3. 已知如圖,梯形ABCD中,AB∥DC,AD=DC=CB,AD、BC的延長線相交于G,CE⊥AG于E,CF⊥AB于F

  (1)請寫出圖中4組相等的線段。(已知的相等線段除外)

  (2)選擇(1)中你所寫的一組相等線段,說說它們相等的理由。

  解:(1)DG=CG,DE=BF,CF=CE,AF=AE,AG=BG

  (2)證明AG=BG,因為在梯形ABCD中,

  AB∥DC,AD=BC,所以梯形ABCD為等腰梯形

  ∴∠GAB=∠GBA

  ∴AG=BG

  課堂小結:

  本節課的學習要注意轉化的思想方法,有關等腰梯形的問題往往通過作輔助線將其轉化為更特殊的四邊形和三角形,常見辦法是平移腰,延長腰,作高分割,平移對角線等方法。

【初三上冊數學教學計劃范文錦集七篇】相關文章:

六年級上冊數學教學計劃范文錦集七篇03-31

初三數學教學計劃03-04

初三數學教學計劃(15篇)03-04

三年級上冊數學教學計劃錦集七篇03-17

初二數學上冊教學計劃03-22

關于六年級上冊數學教學計劃范文錦集五篇04-07

有關二年級上冊數學教學計劃范文錦集10篇04-06

關于三年級上冊數學教學計劃范文錦集9篇04-05

有關一年級上冊數學教學計劃范文錦集五篇04-03

關于六年級上冊數學教學計劃范文錦集7篇04-03

久久综合国产中文字幕,久久免费视频国产版原创视频,欧美日韩亚洲国内综合网香蕉,久久久久久久久久国产精品免费
日韩动漫一区在线观看 | 欧美精品白嫩少妇视频在线 | 日本一道本精品一区二区手机版 | 亚洲激情网五月婷婷久久 | 在线观看亚洲精品福利片 | 亚洲一区二区三区片 |