- 相關推薦
小學數學5年級下冊《分數的基本性質》教學設計(精選11篇)
作為一位兢兢業業的人民教師,編寫教學設計是必不可少的,借助教學設計可以更大幅度地提高學生各方面的能力,從而使學生獲得良好的發展。那么寫教學設計需要注意哪些問題呢?以下是小編幫大家整理的小學數學5年級下冊《分數的基本性質》教學設計范文,供大家參考借鑒,希望可以幫助到有需要的朋友。
小學數學5年級下冊《分數的基本性質》教學設計 篇1
教學目標:
知識與技能:通過教學使學生理解的掌握分數的基本性質,能運用分數的基本性質把一個分數化成指定分母(或分子)相同而大小不變的分數,并能應用這一性質解決簡單的實際問題。
過程與方法:引導學生在參與觀察、比較、猜想、驗證等學習活動的過程中,有條理,有根據地思考、探究問題,培養學生的抽象概括能力。
情感、態度和價值觀:使學生受到數學思想方法的熏陶,培養樂于探究的學習態度。
教學重點:
理解和掌握分數的基本性質。
教學難點:應用分數的基本性質解決問題。
教學準備:預習生成單、作業紙、課件
教學課時:
一課時
教學過程:
一、 導入新課,揭示課題
1、 師:通過昨天的預習,你知道我們今天要學習什么內容?(生:分數的基本性質)
2、 師:針對這個內容,同學們做了充分的預習,相信你們一定提出了不同的數學問題,現在請組長帶領組員提煉出你們組最想研究的問題。
3、 指名學生匯報。
4、 師:同學們,不管你們提出什么樣的問題,都與分數的基本性質有關,今天我們就帶著這些問題走進課堂。
二、 檢查預習,自主探究
1、 出示預習生成單:(師:我們已經預習了這部分內容,請同學們組內交流一下你們的預習成果,形成統一意見準備匯報。)
2、 指名上臺展示并匯報。(師:哪個組的同學愿意最先上來展示你們的成果?)
3、 (學生展示中注意分工匯報,在匯報中要注意學生用比一比的方法證明涂色部分相等,如果有用分數的意義的理解“都是相同紙的一半”或者“分子是分母的一半”理解也要給予肯定,教師應及時提出,照這樣一半的理解,提問:你能在寫出一個和他們大小一樣的分數嗎?教師及時的板演,
4、 師:其他同學還有補充嗎?你們得出這個結論了嗎?
三、 合作交流,探究新知
1、 師:第一張紙涂色部分是這張紙的(學生說二分之一),第二張紙涂色部分是這張的(四分之二),第三張紙涂色部分是這張紙的(八分之四),涂色部分都相同,也就證明這三個分數的大小也(學生說相等),可是,它們的分子分母卻不相同,他們有沒有一定的變化規律呢?我們通過合作交流來探究這個問題。
2、 出示合作要求(課件),指名學生讀一讀。
3、 學生合作交流,探究學習。
4、 學生匯報中教師要及時糾正學生的'語言要規范,同時,可以讓小組回想補充,特別是,跳躍的兩個分數的分子和分母之間的變化規律是怎樣?
5、 指導匯報,總結規律。誰能完整的說一下你們剛才總結出的規律?
6、 教師歸納板書:分數的分子和分母同時乘或者除以相同的數 ,分數的大小不變。
7、 請同學們讀一讀這句話,想一想:還有需要補充的內容嗎?(0除外)
8、 再讀一讀,說說這句話中哪個詞比較關鍵。
9、 拓展深化,加深理解 ,完成練習,思考:分數的基本性質與商不變的性質之間的聯系。(練習一)這個過程也要看學生的生成在哪,教師及時的給予肯定。
10、教師小結:通過剛才的學習,孩子們的表現特別出彩,老師相信你們接下來的表現會更棒。
四、應用拓展,新知內化
1、出示例2,指名讀題,理解題意。
2、師:你覺得解決這道題應該利用什么知識?(生:分數的基本性質)
3、學生獨立在練習本上完成,指名板演,集體訂正。
4、小結:剛才,我們通過自主學習、小組探究知道了什么是分數的基本性質,下面就應用分數的基本性來解決一些實際問題。
五、當堂檢測
。ㄒ唬、下面每組中的兩個分數是否相等?相等的在括號里畫“√”,不相等的畫“X”。
。ǘ、填空。
。ㄈ严铝蟹謹祷煞帜甘10而大小不變的分數。
。ㄋ模、涂色表示出與給定分數相等的分數。
(五)、如果一堂課40分鐘,哪個班做練習用的時間長?
六、課堂小結:
通過這節課的學習,你學會了什么?
板書設計:
分數的基本性質
分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
小學數學5年級下冊《分數的基本性質》教學設計 篇2
教學內容:
蘇教版小學數學教材第十冊,第95~96頁,例1、例2,分數的基本性質。
教學目標:
1、通過直觀操作體會分數的基本性質的實際含義,能正確敘述分數的基本性質。
2、能正確理解分數的基本性質,能應用分數的基本性質,把一個分數化成指定分母而大小不變的分數。
3、創設情境,讓學生經歷提出問題,發現規律的探究過程,培養學生的觀察、比較、抽象、概括等思維能力。
教具、學具:4張同樣大小的紙條/每人
教學過程:
教學環節與教學內容
學生學習活動
教師教學活動
一、
復習準備:
1、出示:
除法
分數表示
小數表示
1÷2
2÷4
3÷6
2、啟思引入。
口算。
回憶、口答分數與除法的關系。
回憶并口述商不變的規律。
提出問題。
板書。談話引導。
“用分數表示時,你是根據什么來做的?”
“觀察用小數表示的結果,體現了什么規律?”
“完成上題后,你產生了哪些疑問?”
二、
進行新課:
1、直觀驗證
2、發現規律
(1)探索
(2)應用
==
==
==
(3)探索:分子、分母同時除以一個相同的數(“0”除外)分數的`大小就不變。
(4)概括規律。
3、組織練習。
(1)判斷:
=()
=()
=()
=()
(2)說一說,和有什么關系?
(3)說一說,商不變的性質和分數的基本性質有什么關系?
4、教學例2。
用紙條操作、驗證,并展示。
思考、口答。
討論、交流。
填空、交流。
交流,發現“(零除外)”。
討論、交流。
口述。
理解、記憶。
判斷、口答。
交流,
交流。
嘗試解答。
集體交流。
“你能直觀驗證一下==嗎?”
“你能從操作過程中體會到這三個分數為什么會相等嗎?”
“你能再寫一個統它們相等的分數嗎?”“寫的時候你是怎樣想的?”
“你發現了什么規律?”
“怎樣填才能又對又快?
總結規律。
“一定要分子、分母同時乘一個相同的數(”0“除外)分數的大小就不變嗎?”
“你是怎樣發現的?”
“能把它們合成一句話嗎?”
揭示、板書課題。
指導。
巡視、個別輔導。
評講。
三、
課堂小結:
反思、回顧、整理、交流。
“今天這節課,我們一起學習了什么內容?你知道了些什么?它有什么作用?”
四、
鞏固練習:
練習十八1
練習十八2
練習十八3
先操作,再比較。
先判斷,再說理。
指名口答。
“這題驗證了什么性質?”
教后反思
小學數學5年級下冊《分數的基本性質》教學設計 篇3
教學內容:
人教版《義務教育課程標準實驗教科書數學》五年級(下冊)75—78頁。
設計思路:
《分數的基本性質》是人教版《義務教育課程標準實驗教科書數學》五年級(下冊)第四單元《分數的意義和性質》的第三節內容。它是在學生已掌握了商不變的性質之后,并在已有應用經驗的基礎上進行學習的。這節課的教學重點是理解和掌握分數的基本性質,并能運用分數的基本性質解決實際問題。教材共安排了兩道例題、“做一做1、2題”等。教學中創設學生熟悉的情景,組織學生自主活動,進行主動探究,體會知識的形成過程,體驗學習的快樂。通過鼓勵學生大膽猜想,讓學生動手操作、觀察、分析、比較、討論、合作交流等探究活動,圍繞牽動教學主線的“猜想”,開展自主、探究式學習,以驗證自己的猜想,發現、總結、概括出“分數的基本性質” ,并應用于實踐解決簡單的實際問題,做到學以致用,發展學生思維,提高學生學習數學的興趣,感受學習數學的樂趣,培養學生樂于探究的人生態度。
教學目標:
1.通過教學理解和掌握分數的基本性質,能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數,再應用這一規律解決簡單的實際問題。
2.引導學生在參與觀察、比較、猜想、驗證等學習活動過程中,有條件、有根據的思考、探究問題,培養學生的抽象概括能力。
3.滲透初步的辯證唯物主義思想教育,使學生收到數學思想方法的熏陶,培養探究的學習態度。
教學重點:
理解和掌握分數的基本性質。
教學難點:
應用分數的基本性質解決實際問題。
教學方法:
直觀演示法、討論法等。
學法:
合作交流、自主探究。
教學準備:
每位學生準備三張同樣大小的正方形(或長方形)的紙片;教師:長方形(或正方形)的紙片、PPT課件等。
教學過程:
一.創設情景,激發興趣
(課件出示)
1.120÷30的商是多少?被除數和除數都擴大3倍,商是多少?被除數和除數都縮小10倍呢?
2.說一說:
(1)商不變的性質是什么?
。2)分數與除法的關系是什么?
( )( )( )3.填空:1÷2= ( ) (1×2)÷(2×2)=( )( )
二.大膽猜想,揭示課題
學生大膽猜想:在除法里有商不變的性質,在分數里會不會有類似的性質存在呢?(生答:有!)這個性質是什么呢?
隨著學生的回答,教師板書課題:分數的基本性質。
三 .探索研究,驗證猜想
1. 動手操作,驗證性質。
(1)學生拿出三張同樣大小的正方形(或長方形)紙片,分別平均分成4份、8份、12份,并分別給其中的1份、2份、3份涂上色,把涂色部分用分數表示出來。引導學生觀察、思考:你發現了什么?
(2)小組合作:
①觀察、分析、比較在組內交流你的發現。
、诤献鹘涣,各抒己見。
123③選代表全班匯報、交流,師相機板書:4812
123(3)合作討論: 為什么相等? 4812
、僖孕〗M為單位思考討論:(引導)它們的分子、分母各是按照什么規律變化的?
、谟^察它們的分子、分母的變化規律,在組內用自己的話說一說。
2.分組匯報,歸納性質。
a.從左往右看,分子、分母的變化規律怎樣?選擇一組學生根據探究報告,到黑板上邊說邊用箭頭表示出分子、分母的變化過程。
(根據學生回答
b.從右往左看,分數的分子和分母又是按照什么規律變化的?
。ǜ鶕䦟W生的回答)
c.有與這一組探究的分數不一樣的嗎?你們得出的規律是什么?
d.綜合剛才的探究,你發現什么規律?
。4)引導學生概括出分數的基本性質,回應猜想。
對這句話你還有什么要補充的?(補充“零除外”)
討論:為什么性質中要規定“零除外”?
(5)齊讀分數的基本性質。在分數的基本性質中,你認為要提醒大家注意些什么?(同時、相同的數、0除外)。為什么?你能舉例說明嗎?教師則根據學生回答,在相應的字下面點上著重號。
師生共同讀出黑板上板書的分數基本性質(要求關鍵的字詞要重讀)。
四.回歸書本,探源獲知
1.瀏覽課本第75—78頁的內容。
2.看了書,你又有什么收獲?還有什么疑問嗎?(指名匯報、交流)
3.分數的'基本性質與商不變性質的比較。
(1)小組合作:討論分數的基本性質與商不變性質的異同。
(2)小組內交流。
(3)選代表全班交流、匯報。
(4)小結歸納:分數的基本性質與商不變性質內容相同,只是名稱不同罷了!
4.自主學習并完成例2,請二名學生說出思路。
五.鞏固深化,拓展思維(PPT演示文稿出示下列題目)
1.想一想,填一填。
33×( )988÷( )() 55×( )( )2424÷( )3
學生口答后,要求說出是怎樣想的?
2.在下面( )內填上合適的數。
要求:后二題采取師生對出數的游戲形式進行,如先由教師出分子,再讓學生對出分母,也可以先由學生出分母,再讓教師對出分子。
3.思維訓練(選擇你喜愛的一道題完成)
3(1)的分子加上6,要使分數的大小不變,分母應加上多少? 5
(2)1/a=7/b(a、b是自然數,且不為0),當a=1,2,3,4??時,b分別等于幾?
討論:a與b之間的關系是怎樣的?為什么會存在這樣的關系?依據是什么?
。3)把6/20、70/100、45/50、1/2和4/5化成分母相同而大小不變的分數。
思考:分數的分母相同了,有什么作用?揭示學習分數的基本性質的重要性,鼓勵學生學好、用好。
六.全課小結
本節課你收獲了什么?同桌交流分享你獲取知識的快樂!(匯報全班交流)
七.布置作業
P77—78練習十四第1、5、8題。
教學反思
“分數的基本性質”是在學生已掌握了商不變的性質之后,并在已有應用經驗的基礎上進行學習的。這節課用“猜想——驗證——反思”的方式學習分數的基本性質,是學生在大問題背景下的一種研究性學習。這不僅對學生提出了挑戰,而且對教師也提出了挑戰。教學中創設學生熟悉的情景,組織學生自主活動,進行主動探究,體會知識的形成過程,體驗學習的快樂。通過鼓勵學生大膽猜想,讓學生動手操作、觀察、分析、比較、討論、合作交流等探究活動,圍繞牽動教學主線的“猜想”,開展自主、探究式學習,以驗證自己的猜想,發現、總結、概括出“分數的基本性質” ,并應用于實踐解決簡單的實際問題,做到學以致用,發展學生思維,提高學生學習數學的興趣,感受學習數學的樂趣,培養學生樂于探究的人生態度。
本節課教學設計突出的特點是學法的設計。從“創設情境、激發興趣;大膽猜想、揭示課題;探索研究、驗證猜想;回歸書本、探源獲知;鞏固深化、拓展思維”到“全課小結”每一個環節完全是為學生自主探究、合作交流學習而設計的。通過教學總結了自己的得與失如下:
1. 創設情境,可以更好地激發學生的學習興趣,學生有了這樣的學習興趣,我想這節課已經成功了一半。因為興趣是最好的老師!
2.學生在操作中大膽猜想。
新課標積極倡導學生 “主動參與、樂于探究、勤于思考”,以培養學生獲取知識、分析和解決問題的能力。因此我由學生的猜想入手,可以最大限度的調動學生“驗證自己猜想”的積極性和主動性,接下來通過學生:動手操作、觀察、比較、分析、討論、合作交流、探究等活動都是為了驗證學生自己的猜想,這些環節充分發揮了學生的主動性、積極性,從而凸顯學生在學習中的主體地位。教師在教學過程成為學生學習的引導者、支持者、服務者。同時創設猜想的情境,學生通過動手操作、觀察、比較、分析、討論、合作交流的探究方式來經歷數學,獲得感性經驗,進而理解所學知識,完成知識創造過程。并且也為學生多彩的思維、創設良好的平臺,由于學生的經歷不同,認識問題的角度不同,促使他們解決問題的策略多樣化,使生生、師生評價在價值觀上都得到了發展。
3.學生在自主探索中科學驗證。
小學數學5年級下冊《分數的基本性質》教學設計 篇4
教學目標
(一)理解和掌握分數的基本性質。
(二)能運用分數的基本性質把一個分數化成指定分母(或分子)而大小不變的分數。
(三)培養學生觀察、分析和抽象概括的能力,滲透事物是相互聯系,發展變化的辯證唯物主義觀點。
教學重點和難點
(一)理解和掌握分數的基本性質。
(二)歸納分數的基本性質,運用性質轉化分數。
教學用具
教具:投影片,三張相同的長方形紙,一面為白色,另一面分別給
學具:每位同學準備三張相同的長方形紙片。
教學過程設計
(一)復習準備
1.口答:(投影片)
根據 120÷30=4,不用計算直接說出結果:
(120×3)÷(30×3)=( );(120÷10)÷(30÷10)=( )。
2.說一說依據什么可以不用計算直接得出商的?
3.說出商不變的性質。
教師:除法有商不變性質,分數與除法又有關系,分數有沒有類似的性質呢?下面就來研究這個問題。
(二)學習新課
1.分數基本性質。
(1)教師取出一張長方形白紙,說明這為單位“1”,再取出同樣的兩張白紙,重疊放在一起請學生觀察,問:三張紙重疊后完全重合,說明什么?(三個單位“ 1”同樣大)教師把三張紙分貼在黑板上。
教師請同學取出自己準備的三張長方形紙,并比一比是不是同樣大。
教師:請分別把它們平均分成2份;4份,6份(折出來),并分別給其中的1份,2份和3份涂上顏色或畫上陰影。然后把涂了顏色的部分用分數表示出來。
學生口答后,老師把黑板上的`紙片翻面,露出涂了色的一面,板書:
教師:請比較這三個分數的大?
你根據什么說這三個分數相等?
學生口答后老師用等號連結上面三個分數。
(2)教師:這幾個分數的分子和分母都不相同,但三個分數的大小是相等的,下面我們來研究在保持分數大小不變的情況下,分子分母的變化有沒有什么規律?
請同學觀察,思考和討論。投影出思考題:
如何?
結果如何?
變,那么分子,分母同時乘以4,乘以5,乘以6呢?規律是什么?
學生口答后,教師小結并板書:分數的分子和分母同時乘以相同的數,分數大小不變。(留出“或者除以”的空位。)
的變化規律是什么?(學生小組討論后匯報)教師板書:
教師:試說一說這時分子、分母的變化規律?
學生口答后老師小結:分數的分子和分母同時除以相同的數,分數大小不變。板書補出“除以”。
教師:想一想,分數的分子、分母都乘以或除以0可以嗎?為什么?(不行。)
(3)請根據上面的研究,說一說你發現了什么規律?請概括地說一說。
學生口述分數基本性質的內容,老師把板書補充完整。
教師:這就是分數的基本性質,是這節課研究的問題。板書出課題:分數基本性質。
請學生打開書讀兩遍。
教師:想一想,如何用整數除法中商不變的性質說明分數基本性質?(舉例說明)
用學生自己的例題說明后,用投影片再說明:
口答填空:(投影片)
2.把一個分數化成大小相等,而分子或分母是指定數的分數。
分子應怎樣變化?誰隨著誰變?
化?誰隨著誰變?
教師:上面兩個分數的變化依據是什么?
(2)口答練習:(學生口答,老師板書。)
教師:利用分數基本性質,可以把分數化成大小相等而分子或分母是指定數的分數。
(三)鞏固反饋
1.口答:(投影片)
2.在括號里填上“=”或“≠”。(投影)
3.在( )里填上適當的數。(投影)
4.判斷正誤,并說明理由。
(四)課堂總結與課后作業
1.分數基本性質。
2.把分數化成大小相同而分子或分母是指定數的分數的方法。
3.作業:課本108頁練習二十三,1,2,4,5。
課堂教學設計說明
分數基本性質是在分數大小不變的前提下研究分子、分母的變化規律。所以在教學過程中,抓住“變化”作為主線,設計思考題引導學生觀察、對比、分析,使學生在變化中找出規律、概括出分數的基本性質。安排例2,是讓學生運用規律使分數產生變化。這樣,從兩方面方面加深學生對分數基本性質的理解。
在學生掌握了分數基本性質后,安排他們舉例討論,以溝通分數基本性質和商不變性質之間的內在聯系,便于學生能把新舊知識融為一體。
在整個學習過程中都是學生活動為主,這樣有利于培養學生觀察、分析和抽象概括的能力。
新課教學分為兩部分。
第一部分學習分數基本性質。分三層,通過學生活動,學生從直觀上認識到分子、分母不相同的分數有可能相等;研究分子、分母的變化規律;概括分數基本性質,并用商不變性質來說明。
第二部分是應用分數基本性質,使分數按要求進行變化。分兩層,根據分母需要,確定分子、分母需要擴大或縮小的倍數;根據分子需要,確定分子、分母需要擴大或縮小的倍數。
板書設計
小學數學5年級下冊《分數的基本性質》教學設計 篇5
教學目的:
1、理解和掌握分數的基本性質。
2、理解分數的基本性質與商不變規律的關系。
3、培養教學內容:小學數學第十冊,分數的基本性質教材第107~108頁。學生觀察、比較,抽象、概括的能力及初步的邏輯推理能力。
4、應用分數的基本性質解決簡單實際問題。
5、正確認識、處理變與不變的的辨證關系。
教學重點:
掌握分數的基本性質。
教學難點:
抽象概括分數的基本性質。
教具學具準備:
多媒體及課件一套、學生每人三張同樣大小的紙條、彩筆。
教學步驟:
一、
1、復習舊知
除法與分數之間有什么聯系?
被除數÷除數=被除數
除數
1)、你能用分數表示下面各題的商嗎?
1÷2=()3÷6=()5÷10=()4÷8=()
2)、根據400÷25=16在□里填數:
(400×4)÷(25×4)=□
根據360÷90=4在□里填數:
。360÷□)÷(90÷10)=4
(2)你是怎樣想的?(回憶除法中商不變性質)
商不變的性質內容是什么?
3)、引入:剛才我們復習了除法中商不變的性質,在分數中有沒有類似的性質呢?
2、激趣引入:和尚分餅
從前有座山,山上有座廟,廟里有個老和尚和一個小和尚,哦,不,是三個小和尚。小和尚們很喜歡吃老和尚做的餅,有一天,老和尚做了三個同樣大小的餅,還沒給,小和尚們就叫開了,小和尚說:“我要一塊。”老和尚二話沒說,就把一塊餅平均分成二塊,取其中的一塊給了小和尚。高和尚說:“我要二塊!崩虾蜕杏职训诙䦃K餅平均分成四塊,取其中的兩塊給了高和尚,胖和尚搶著說:“我不要多了,我只要三塊!崩虾蜕杏职训谌龎K餅平均分成六塊,取其中的三塊給了胖和尚。老和尚一一滿滿足了小和尚們的.要求,同學們,誰會用一個數來表示三個和尚分得的餅數?板書:1/22/43/6
你們猜猜哪個和尚分的餅多?板書:1/4=2/8=4/16
這幾個分數真的相等嗎?讓我們做個實驗來證明。
3、操作感知:
(1)請同學們拿出三張大小相同的長方形紙條。
通過實驗、觀察、分析、討論
①把第一張紙條平均分成2份,其中1份涂上顏色并用分數表示出來;
、诎训诙䦶埣垪l平均分成4份,其中2份涂上顏色并用分數表示出來;
、郯训谌龔埣垪l平均分成6份,其中3份涂上顏色并用分數表示出來
然后看涂上顏色的部分是不是一樣大。這說明了什么?
引導:聰明的老和尚是用什么辦法來既滿足小和尚們的要求,又分得那么公平的呢?同學們想知道嗎?學習了“分數的基本性質”就清楚了。(板書課題)
這三個分數它們之間有什么變化規律嗎?下面我們就來研究這個變化規律。
二、比較歸納揭示規律
比較這三個分數分子和分母,它們各是按照什么規律變化的?:
1、說說這三個分數的意義。
2、總結規律:
。1)從左往右觀察:
a、觀察手中第一、第二張紙條。
發現:1/2是把單位“1”平均分成2份,表示其中的1份。如果把分的份數和表示的份數都乘2,就得到2/4。就是1/2=1×2/2×2=2/4
b、再讓學生說說從1/2到3/6,分數的分子和分母又是按什么規律變化的?
板書:1/2=1×3/2×3=3/6
c、根據上面的分析,你能得出什么結論?引導學生說出:分數的分子和分母同時乘相同的數,分數的大小不變。
(2)引導學生觀察、討論:
從右往左看,3/6到1/2,2/4到1/2,分數的分子和分母是按什么規律變化的?從中你能得出什么結論?
學生邊回答邊板書:3/6=3÷3/6÷3=1/2
2/4=2÷2/4÷2=1/2
并得出結論:分數的分子和分母同時除以相同的數,分數的大小不變。
3、抽象概括歸納性質
。1)引導學生把剛才出示的兩條規律合并成一條規律。指出這就是“分數的基本性質”。
。2)齊讀書上的結論,比一比少了些什么?討論:為什么性質中要規定“零除外”齊讀。
分母不能是0,所以分數的分子、分母不能同時乘以0;又因為除法里,零不能作除數,所以分數的分子、分母也不能同時除以0。
三、出示例2
1、把2/3和10/24化成分母是12而大小不變的分數。
引導學生思考:把3/4和15/24化成分母是12而大小不變的分數,分子要不要發生變化,變化的依據是什么?
學生獨立完成。
四、多層練習鞏固深化
1、鞏固練習:
口答
1/5=()/159/18=()/6
2/3=()/1210/24=()/12
6/10=()/20=3/()=18/()
2、深化練習:
下面每組中的兩個分數相等嗎?為什么?
3/5和6/101/15和1/5
3、應用練習:
判斷:
(1)分數的分子和分母都同時乘以或者除以相同的數,分數的大小不變。()
。2)一個分數的分子擴大10倍,要使分數的大小不變,分母也要擴大10倍。()
。3)一個分數的分母除以5,分子也除以5,分數的大小不變。()
4、發散練習:你能寫出和4/6相等的分數嗎?
在一分鐘內比一比誰寫得多,讓寫的最多的同學報出來,給予表揚。
5、游戲:請找找我的好朋友
五、全課總結
提問:我們這節課學習了什么內容?分數的基本性質是什么?
通過今天的學習,你認為學習分數的基本性質有什么作用?
小學數學5年級下冊《分數的基本性質》教學設計 篇6
教材簡析:
分數的基本性質是以分數大小相等這一概念為基礎的。因為分數與整數不同,兩個分數的大小相等,并不意味著兩個分數的分子、分母分別相同。教學時,可引導學生觀察一組相等分數的分子、分母是按什么規律變化的,再結合分數的意義歸納出分數的基本性質。由于分數和整數除法存在著內在聯系,所以分數的基本性質也可以利用整數除法中商不變的性質來說明。
設計理念:
分數的基本性質是約分和通分的`基礎,而約分、通分又是分數四則運算的重要基礎,因此,理解分數的基本性質顯得尤為重要。因此我把學生的學習定位在自主建構知識的基礎上,建立了猜想試驗分析合情推理探究創造的教學模式。
在課堂上,我先通過故事讓學生進入情境,然后讓學生去猜想、觀察、試驗、感悟,進而得出結論。當學生得出分數的分子、分母都乘或除以同一個數,分數的大小不變之后,再結合商不變的性質深入理解,把知識融會貫通。整個教學過程注重讓學生經歷了探索知識的過程,使學生知道這些知識是如何被發現的,結論是如何獲得的,體現了方法比知識更重要這一新的教學價值觀,構建了新的教學模式。
《數學課程標準》指出:學生是學習數學的主人,教師是數學學習的組織者、引導者與合作者。這就要求我們在教學活動中應該為學生提供大量數學活動的機會,讓學生去探索、交流、發現,從而真正落實學生的主體地位。
教學目標:
1、使學生理解和掌握分數的基本性質,能應用性質解決一些簡單問題.
2、培養學生觀察、分析、思考和抽象、概括的能力.
3、滲透形式與實質的辯證唯物主義觀點,使學生受到思想教育.
教學重點:
使學生理解和掌握分數的基本性質,培養學生的抽象、概括的能力。
教學難點:
讓學生自主探索,發現和歸納分數的基本性質,以及應用它解決相關的問題。
教具準備:
每生三張正方形紙
教學方法:
演示法、觀察法、討論法、交流法。
小學數學5年級下冊《分數的基本性質》教學設計 篇7
教學目標
進一步理解掌握分數基本性質在通分中的運用,能熟練而靈活地運用通分的方法進行分數的大小比較。
教學重難點
旋擇適當的方法進行分數的大小比較。
教學準備
分數卡片
教學過程
一、基本練習
學生自由練習
互相說一個分數,再通分。
學生匯報 糾錯
二、集中練習
教師出示:比較下面各組分數的大小
1、 和 和
2、 和 和
請同學評講
課本練習68頁第九題 把下面分數填入合適的圈內。
比 大的分數有:
比 小的分數有:
師生討論:怎樣快速的分類?
自由說一個比 的分數。并說出理由。
三、解決實際問題的.練習
小明:我10步走了6米,
小紅:我7步走了4米。
問:誰的平均步長長一些?
小組討論,明確解題步驟。
小明:6÷10= =
小紅:4÷7=
因為 = = >
所以 >
答:小明的平均步長長一些。
四、拓展練習:
下面3名小棋手某一天訓練的成績統計
總盤數贏的盤數贏的盤數占總數的幾分之幾
張129
李107
趙138
誰的成績最好?
小組合作集體解決題型。
三個分數的大小比較,怎樣比較較好?
五、課堂作業
68頁第11題
小學數學5年級下冊《分數的基本性質》教學設計 篇8
教學目標:
1、經歷探索分數基本性質的過程,理解分數的基本性質。
2、能運用分數基本性質,把一個數化成指定分母(或分子)大小不變的分數。
3、經歷觀察、操作和討論等數學活動,體驗數學學習的樂趣及數學與日常生活密切聯系。
教學重點:
運用分數的基本性質,把一個數化成指定分母(或分子)而大小不變的分數。
教學難點:
聯系分數與除法的關系,理解分數的基本性質,溝通知識間的聯系。
教學準備:
多媒體課件 長方形白紙、圓片,彩色筆等。
教學過程:
一、 創設情境,激趣導入
師:同學們,新的學期到來了,你們剛入校園時覺得我們學校都發生了哪些變化,(換了新課桌,有了新的洗手間,有了文化走廊,有了開心農場),說到開心農場,還有一個小故事,開學初,校長決定把這塊地的三分之一分給四年級,六分之二分給五年級,九分之三分給六年級,四年級同學認為校長不公平,分給六年級的同學多而分給他們的少,校長聽了,笑了,誰能根據自己的預習告訴老師校長笑什么?
生1:四、五、六年級分的地一樣多。
生2:……
師:到底校長分的公平不公平,我們來做個實驗吧?
二、動手操作,探究新知
1、小組合作,實驗探究。
師:請同學們拿出你們準備好的學具,按平時的分組習慣四人一組,用你們的學具來代替這塊地,像校長一樣來分地吧。
2、匯報結果
師生交流:你們是怎樣做的?誰能說一說,請幾個同學上臺演示并口述演示過程。
生1:用三張同樣的長方形的紙來代替這塊地,分別涂出其中的三分之一,六分之二,九分之三。經過對比發現三塊地一樣多。
生2:用三個同樣的圓片分別涂出其中的三分之一,六分之二,九分之三。經過對比發現三塊地一樣多。
生3:用三條線段分別畫出其中的三分之一,六分之二,九分之三。經過對比發現三塊地一樣多。
生4:把分數化成小數,他們的商也一樣,所以三塊地的面積一樣大 。
生5:……
3、課件展示,得出結論。師:校長分的和你們一樣嗎?我們再來看看小電腦是如何拼的,(利用優質資源課件演示分地的過程,師生共同觀察總結得到校長分的地一樣多。)
(設計意圖:這樣設計的目的是為了更有利于學生主體個性的發揮,在探究活動中充分發揮學生的個體的潛能,給學生足夠的時間和想象的空間,進行小組合作式的探究活動,讓學生自由的猜想,使實驗成為自己的需要,同時讓學生思考用什么方法驗證,使學生帶著濃濃的興趣進入探究新的學習活動之中。)
4、探索分數的基本性質。
師:三個年級分的地一樣多,那么你們覺得、 這三個分數的大小怎么樣?
生:相等。
師:同學們請看這組分數有什么特點?(板書 =)
生:分數的分子分母發生了變化分數的大小不變。
師:請同學們從左往右仔細觀察,第一個分數和第二個分數相比分子分母發生了什么變化?第一個和第二個,第二個和第三個呢?
生:分子分母同時乘2,……
師:誰能用一句換來描述一下這個規律?
生:給分數的分子分母同時乘相同的數。(師隨著板書)
師:同學們在反過來從右往左觀察,分數的分子、分母有什么變化規律?
生:分數的分子分母同時除以相同的數。
師:像這樣給分數的分子分母同時乘或(除以)相同的.數,分數的大小不變。就是我們這節課學習的新知識。(板書 分數的基本性質)。
師:結合我們的預習,對于分數的基本性質同學們還有什么不同的意見?
生:0除外。
師:為什么0要除外?
生:因為分數的分母不能為0.
師:(補充板書0除外)在分數的基本性質中,那幾個詞比較重要?
生:同時 相同 0除外
師:(把這三個詞用紅筆加重)同學們有沒有發現分數的基本性質和誰比較相似?
生:商不變的性質。
師:為什么?
生:我們學過分數與除法的關系,被除數相當于分子,除數相當于分母,所以他們是相通的。
師:數學知識中有許多知識如像商不變性質與分數的基本性質是一致的。因此平時學習中我們要觸類旁通,靈活運用,才會舉一反三。
三、應用新知,練習鞏固。
(一) 練一練
(二)摸球游戲。老師手中有一個箱子,里面裝有許多水果,水果上面寫著不同的分數,如果你摸到一個水果,說出一個與它大小相等,而分子分母不同的新分數,這個水果就獎勵給你。
(二) 判斷(搶答)
1、 分數的分子、分母都乘過或除以相同的數分數的大小不變。( )
2、 把的分子縮小5倍,分母也縮小5倍分數的大小不變。( )
3、 給分數的分子加上4,要是分數的大小,分母也要加上4。( )
(四)測一測
1、把和都化成分母是10而大小不變的分數。
2、把和都化成分子是4而大小不變的分數。
3、的分子增加2,要是分數大小不變,分母應增加幾?
四、總結。
1、這節課大家表現的都很棒,誰能說說你這節課你都知道哪些知識?
2、把板書最后補充成一條魚,希望大家擁有一雙明亮的眼睛,肚子里裝滿知識,在知識的海洋里遨游。(完成板書)
五、作業
練習冊2、4題
板書設計:
分數的基本性質
給分數的分子分母同時乘或除以相同的數(0除外)分數的大小不變。
小學數學5年級下冊《分數的基本性質》教學設計 篇9
教學目標
1、進一步理解通分的意義,
2、掌握通分的方法。能熟練的把異分母分數化成與它們相等的同分母分數。
3、能靈活的運用通分的方法進行分數的'大小比較。
教學重難點:
運用通分的方法進行分數大小比較
教學準備:
分數卡片
一、回顧
1、什么是通分?怎樣通分?
2、我們可以在什么時候應用通分?
3、互動:相互出題練習相互交流(3分鐘)
二、教學例5
出示例題:小芳和小明看一本同樣的故事書。
學生提出問題。
分析解答。
師:誰看的頁數多?
這個問題實質是什么?
生:比較兩個分數的大小。
師:小組研究,比較兩個分數的大小。
方法一:畫圖比較
方法二:通分比較
轉化成同分母的分數
方法三:化成小數再比較
學生匯報,分類領悟比較的方法。
注意方法的規范。
你還有什么別的比較方法嗎?
通分的方法在比較分數大小中的運用
三、鞏固練習
1.先通分,再比較下面各組分數的大小66頁練一練
2、練習十二第五題
先明確題目的要求有兩個。
4、自由練習
分小組編擬交換練習
四、全課
五、課堂作業:
第7題,第8題
小學數學5年級下冊《分數的基本性質》教學設計 篇10
教學目的:
理解分數的基本性質,并了解它與除法中商不變的規律之間的聯系。
2.理解和掌握分數的基本性質。
3.較好實現知識教育與思想教育的有效結合。
教學難點:
理解和掌握分數的基本性質,并運用分數的基本性質解決問題,進一步加深分數與除法之間的'關系。
教學準備:
板書有關習題的幻燈片。
教學過程:
一、復習
1.出示
在括號里填上適當的數:
指名說一說結果,并說一說你是根據什么填的?
二、課堂練習:
1.自主練習第4題。
學生先獨立做,教師巡視,并個別指導,集體訂正。
教師板書題目中的線段,指名讓學生板演。
在直線那些分數用同一個點表示是什么意思?(就是問哪幾個分數相等。)
怎樣找出相等的分數?
讓學生自己找。集體訂正是要求學生說一說你是根據什么找出相等的分數的?
然后要求學生在書上把這幾個相應的點找出來。指名板演。
2.自主練習第5題。
先讓學生獨立做,教師巡視。個別指導。
指名說一說你的結果,并說一說你是根據什么填的。重點要求學生說清楚利用分數的基本性質來進行填空。
教師根據學生的回答選擇幾個題目進行板書。
3.自主練習第6題。
先讓學生獨立做。教師巡視并個別指導。注意差生中出現的問題。
集體訂正。指名說一說自己的計算過程和結果。
教師根據學生的回答選擇幾個題目進行板書。
4.自主練習第7題。
學生獨立做。教師要求有困難的學生分組討論,教師個別指導。
集體訂正。指名說一說自己的計算過程。教師注意要求學生說清楚計算的根據和理由。
5.自主練習第8題。
學生先獨立做。
集體訂正時,教師先要求學生說一說可以用哪些方法來比較這些分數的大?哪種方法最好?
小學數學5年級下冊《分數的基本性質》教學設計 篇11
教學目標:
1.經歷探索分數的基本性質的過程,理解分數的基本性質。能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
2.經歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分數的基本性質作出簡要的、合理的說明。培養學生的觀察、比較、歸納、總結概括能力。能根據解決問題的需要,收集有用的信息進行歸納,發展學生的歸納、推理能力。
3.經歷觀察、操作和討論等數學學習活動,使學生進一步體驗數學學習的樂趣。體驗數學與日常生活密切相關。
教學重點:
理解分數的基本性質。
教學難點:
能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數
教學過程:
一、創設情境,激趣引新,
1、師:故事引入,揭示課題
同學們,你們聽說過阿凡提的故事嗎?今天老師這里有一個 老爺爺分地的數學故事,你們想聽嗎?(課件出示畫面)誰愿意把這個故事講給大家聽?指名讀故事(盡可能有感情地)
故事:有位老爺爺要把一塊地分給他的三個兒子。老大分到了這塊地的,老二分到了這塊地的 ,老三分到了這塊的。老大、老二覺得自己很吃虧,于是三人就大吵起來。剛好阿凡提路過,問清爭吵的原因后,哈哈大笑了起來,給他們講了幾句話,三兄弟就停止了爭吵。
2、師:你知道,阿凡提為什么會笑嗎?他對三兄弟講了哪些話?
3、學生猜想后暢所欲言。
4、同學們的想法真多。÷斆鞯陌⒎蔡崾窃趺醋屓值芡V範幊车模
二、探究新知,解決問題
1、 動手操作、形象感知
(1)、三兄弟分的地真得一樣多嗎?你能用自己的方法證明嗎?
。2)學生獨立操作驗證。
方法1、涂、折、畫的方法
方法2、計算的方法。
方法3:商不變的性質。
。3)觀察,說說你發現了什么?
2、出示做一做
。1)請同學們認真觀察,同桌之間說一說這三個圖形的涂色部分分別表示什么意義,并用分數表示出來。
。3)觀察,說說你發現了什么? = = (課件揭示)
。4)交流:你還有什么發現?
分數的分子和分母變化了,分數的大小不變。
分數的分子和分母都乘以相同的數,分數的大小不變。
。ò鍟憾汲艘韵嗤臄担ㄕn件演示)
3、出示做一做圖片,學生獨立填寫分數。
(1)說說你是怎么想的?
。2)交流,你發現了什么?(分數的分子和分母都除以相同的數,分數的大小不變。)(板書:都除以相同的數)
4、想一想:引導歸納分數的`基本性質
。1)從剛才的演示中,你發現了什么?
板書:分數的分子、分母都乘以或除以相同的數,分數的大小不變。
(2)補充分數的基本性質:課件出示兩個式子,問學生對不對?講解關鍵詞都、
相同的數、0除外。 都可以換成哪個詞?同時。
板書:分數的分子、分母都乘以或除以相同的數(0除外),分數的大小不變。
。3)揭題:分數的基本性質。先讓學生在課本中找出分數基本性質中的關鍵字詞并做上記號(畫起來或圈出來),要求關鍵的字詞要重讀。(課件揭示)
5、梳理知識,溝通聯系:分數基本性質與學過的什么知識有聯系?你能舉例說說嗎?
師:我們學習了分數與除法的關系,知道分數可以寫成除法的形式。現在我們把商不變性質,分數基本性質,分數與除法的關系這三者聯系起來,你發現了什么?(生舉例驗證,如:3/4=34=(33)(43)=912=9 /12)(課件揭示)
師:其實,數學知識中有許多地方是像商不變性質和分數基本性質一樣相互溝通的,同學們要學會靈活運用,才能做到舉一反三,觸類旁通,取得事半功倍的效果。你們想挑戰嗎?
6、趣味比拼,挑戰智慧
給你們一分鐘時間,寫出幾個相等的分數,看誰寫得既對又多。
交流匯報后,提問:如果給你時間,你還能不能寫,到底能寫幾個?
三、多層練習,鞏固深化。
1、考考你(第43頁試一試和練一練第2題)。
2/3=( )/18 6/21=2/( )
3/5 =21/( ) 27/39=( )/13
5/8=20/( ) 24/42=( )/7
4/( )=48/60 8/12=( )/( )
2、涂一涂,填一填。(練一練第1題)
3、請你當法官,要求說出理由.(手勢表示。)
(1)分數的分子、分母都乘或除以相同的數,分數的大小不變。( )
。2)把 15/20的分子縮小5倍,分母也同時縮小5倍,分數的大 小不變。( )
。3)3/4的分子乘3,分母除以3,分數的大小不變。( )
(4) 10/24=102/242=103/243 ( )
。5)把3/5的分子加上4,要使分數的大小不變,分母也要加上4。( )
。6)3/4=30/4 0=30/4 0 ()
4、找一找:課件出示信息:請幫小熊和小山羊找回大小相等的分數。
5、(1)把5/6和1/4都化成分母是12而大小不變的分數;
(2)把2/3和3/4都化成分子是6而大小不變的分數 6、2/5分子增加2,要使分數的大小不變,分母應該增加幾?你是怎樣想的?
四、拾撿碩果,拓展延伸。
1、看到同學們這么自信的回答,老師就知道今天大家的收獲不少,誰來說說這節課你都收獲了哪些東西?
。ɑ蛴梅謹当硎具@節課的評價,快樂和遺憾各占多少?)
2、學了這節課,現在你知道阿凡提為什么會笑,如果你是阿凡提,你會對三兄弟說些什么?從這個故事中,你還知道了什么?師總結:看來學好數學還是很重要的!祝賀同學們都跟阿凡提一樣聰明。ǐI上有節奏的掌聲)
3、拓展延伸
師:最后,阿凡提為了考考同學們,他特意挑選了一道題,要同學們選擇來完成,有信心去完成嗎?
比一比:三杯同樣多的牛奶,小明喝了其中一杯牛奶的2/3,小紅喝了另一杯牛奶的5/6,小芳喝了最后一杯的9/12,三人誰喝得最多?誰喝得最少?
五、動腦筋退場
讓學生拿出課前發的分數紙。要求學生看清手中的分數。與1/2相等的,報出自己的分數后站在教室的前面,與2/3相等的站在教室的后面,與3/4相等的站在教室的左邊, 與4/5相等的站在教室的左邊。
【小學數學5年級下冊《分數的基本性質》教學設計】相關文章:
分數基本性質教學設計02-15
分數的基本性質教學設計09-15
《分數的基本性質》教學設計05-24
分數的基本性質教學設計04-05
《分數基本性質》教學設計09-14
分數的基本性質小學數學教學反思06-06
《分數的基本性質》教學設計優秀05-09
分數的基本性質教學設計優秀10-30