數的奇偶性教學設計
作為一位兢兢業業的人民教師,很有必要精心設計一份教學設計,教學設計是一個系統化規劃教學系統的過程。教學設計應該怎么寫才好呢?以下是小編精心整理的數的奇偶性教學設計,僅供參考,希望能夠幫助到大家。
數的奇偶性教學設計1
一、舊知鞏固、引入課題
1.師:同學們,我們已經學習了質數和合數。大家能不能舉例說一說什么是質數和合數?什么是奇數和偶數?數的奇偶性有哪些?
要求學生以小組為單位,在組內交流、回顧質數和合數的相關知識。
2.教師說明本節課的練習內容和練習目的。(板書課題)
二、師生互動、解決問題
1.出示教材第16頁“練習四”第一題。
(1)讓學生理解題意以后,獨立完成。
(2)全班反饋。反饋時讓學生說說判斷的理由。
2.出示教材第16頁“練習四”第二題。
讓學生理解題意后獨立完成,最后全班反饋。
3.出示教材第16頁“練習四”第三題。
(1)讓學生以小組為單位,用合作交流的方式解決問題。
(2)全班反饋。反饋時讓學生說說思考的過程。
4.出示教材第16頁“練習四”第四題。
(1)讓學生以小組為單位進行探索。
(2)組織交流引導學生發現規律性
奇數×奇數=奇數
奇數×偶數=偶數
偶數×偶數=偶數
(3)讓學生舉例驗證自己的發現。
三、鞏固練習
1.出示教材第17頁練習四第7題。
四、課堂小結
同學們,在本節課學習中你有什么收獲?你有什么疑難問題嗎?
數的奇偶性教學設計2
1、通過觀察、分析、討論、歸納、猜想的研究方法,小組合作研究出偶數+偶數=偶數,奇數+奇數=偶數,偶數+奇數=奇數。
2、經歷探索加法中數的奇偶變化過程,在活動重視學生體驗探究方法,培養學生分析、解決問題的能力。
3、結合小游戲使學生體會生活中有很多事情中存在數學規律,從而調動學生學習數學的興趣。通過實踐報告,以小組合作的形式探究加法中奇偶性的變化規律,培養學生的小組合作意識和能力。
教學重點:
從生活中的擺渡問題,發現數的奇偶性規律。
教學難點:
運用數的奇偶性規律解決生活中的實際問題。
教具準備:
實物投影儀、一個杯子。
學具準備:
每人一枚硬幣。
教學過程:
一、揭示課題:
自然數包含有奇數和偶數,一個自然數不是奇數就是偶數。這一節課我們要進一步認識數的奇偶性。
二、組織活動,探索新知。
(一)活動一:示圖:小船最在南岸,從南岸駛向北岸,再從北岸駛回南岸,不斷往返。
1、(1)小船擺渡11次后,船在南岸還是北岸?為什么?
(2)有人說擺渡100次后,小船在北岸。他的說法對嗎?為什么?
2、請任說一個擺渡的'次數,學生回答在南岸還是北岸?
3、請學生列表并觀察。
4、想:擺渡的次數與船所在的位置有什么關系?
擺渡奇數次后,船在岸。
擺渡偶數次后,船在岸。
(二)活動二:試一試
1、師:一個杯子杯口朝上放在桌上,翻動1次,杯口朝下,反動2次杯口朝上。翻動10次后,杯口朝---,反動19次后杯口朝-----。
2、師示范,生活動:
擺開始狀態第1次第2次第3次
下上下(師示范,生活動)
3、師:任說一個翻動的次數,學生搶搶搶答杯口朝上還是朝下?
4、觀察杯口,找規律:
想一想:翻動的次數與杯口的朝向有什么關系?
翻動奇數次后,杯口朝。
翻動偶數次后,杯口朝。
5、師:把“杯子”換成“硬幣”你能提出類似的問題嗎?
6、學生你說我答,一人任說一個翻動次數,另一人判斷杯口朝上還是朝下。
(三)活動三:觀察下面兩組數:
1、出示圓內數:121820346801652
2、出示方框內數1149252133710187
(1)讀一讀:
(2)說一說圓中的數有什么特點?
(3)方框中的數有什么特點?
3、偶數有什么特征?奇數有什么特征?
(四)活動四:試一試:
1、從圓中任意取出兩個數相加,和是偶數。
同桌兩人:一人說算式,一人計算和。
師:從以上舉例可以發現?
任請一組同桌匯報,
(1)偶數+偶數=()(2)從正方形中任意取出兩個數相加,和是。
(3)任意寫出兩個偶數,它們的和是。
(4)任意寫出兩個奇數,它們的和是。
(5)分別從圓和正方形中各取一個數相加,和是。
(6)任意寫出一個偶數,一個奇數,它們的和是。
(7)判斷下列算式的結果是奇數還是偶數。
10389+20xx=
11387+131=
三、總結。
這節課同學們有什么收獲和體會?希望同學們做一個生活中的細心觀察者,發現并創造我們美好的生活。
數的奇偶性教學設計3
教學內容:
義務教育課程標準實驗教科書北師大版數學五年級上冊第14-15頁。
教學目標:
1、使學生嘗試運用“列表”、“畫示意圖”等方法發現規律,運用數的奇偶性解決生活中的一些簡單問題。
2、讓學生經歷探索加法運算中數的奇偶性變化的過程,發現數的奇偶性的變化規律。
3、在活動中培養等毛生的觀察、推理和歸納能力。
4、學生通過自主探索發現規律,感受數學內在的魅力,培養學生學習數學的興趣。
教學重點:
探索數的奇偶性變化規律。
教具學具準備:
數字卡片,盒子,獎品。
教學過程:
復習引入新課。(通過引導學生回憶、提問或列舉等形式,復習奇、偶數的意義。)
活動1:數的奇偶性在生活中的應用。
(一)激趣導入。
清早,笑笑第一個走進了教室,像往常一樣把門打開后就去開燈,結果燈未亮,于是,他自言自語地說了聲“停電了”就走到座位上坐下。不一會兒,同學們陸陸續續來到了教室,看到教室里光線有些暗,都下意識地伸手去按電燈開關,卻都像笑笑一樣無奈地走回自己的座位。你知道第11個同學按過開關后,“開關”是打開的還是關閉了?
(二)自主探究,發現規律。
1、學生獨立思考后進行匯報交流。
方法:用文字列舉出開、關的情況
開、關;開、關;開、關;開、關;開、關;開、關……
讓學生數數,直觀地發現第11個人按過開關后,開關是打開的。
2、增加人次,深入探究。
如果是第47個同學或第60個同學進去,用列舉的方法判斷“開關”的開、關情況還方便嗎?你還能想出什么好方法?
3、第二次匯報交流。
投影下表:
用列表的方法啟發學生總結規律并作答:當人數是1、3、5、7……的時候,開關處于開啟狀態,而當人數是2、4、6、8……的時候,開關處于關閉狀態。即,進來的是奇數個同學時,開關被打開;進來的是偶數個同學時,開關被關閉。因為47是奇數,開關被打開;108是偶數,開關被關閉。
(三)鞏固應用。
1、看書學習并解決小船的靠岸問題。
2、解決杯子上下翻轉,杯口的朝向問題。
3、舉例說說數的奇偶性還能解決哪些生活問題?
(四)活動小結。
當一個事物只有兩種(運動或變化)狀態時,運動奇數次后,狀態與初始狀態相反,運動偶數次時,狀態與初始狀態相同。
活動2:探索奇、偶數相加的規律。
(一)有獎游戲。
1、出示分別裝有奇數卡片和偶數卡片的兩個盒子。宣布游戲規則:從自己喜歡的盒子里任意抽取兩張卡片,如果卡片上兩個數的和為奇數,你就可以領取一份獎品。
2、游戲開始。部分學生按規則抽取卡片,并將卡片上兩個數相加的算式及得數寫在黑板上。上來的同學無一人獲獎。
3、引發思考。
師:是你們運氣不好,還是其中隱藏著什么秘密?想一想:如果繼續抽下去,你們有獲獎的可能嗎?
4、發現規律。
學生觀察黑板上的算式,很快發現其中的“秘密”:兩個奇數相加和是偶數;兩個偶數相加和也是偶數。如此抽取卡片,永遠無法獲獎。
5、舉例驗證。
6、修改游戲規則。
(1)師:現在同學們已經發現了不能獲獎的原因了,那么,你能不能修改游戲規則,保證你們能夠獲獎呢?
(新規則:在兩個盒子里各抽出一張卡片,兩張卡片上數的和是奇數可獲獎。)
(2)請學生按修改后的規則試抽幾次,并發獎以資鼓勵。
(3)舉例驗證:奇數+偶數=奇數
(二)總結奇、偶數相加的規律。
奇數+奇數=偶數、偶數+偶數=偶數、奇數+偶數=奇數。
(三)應用規律解決問題。
1、不計算,判斷下列算式的結果是奇數還是偶數。
10389+200411387+131268+1024
2、把5顆糖(全部)分給兩個小朋友,能否使每個小朋友都分到偶數顆糖?奇數顆呢?結果是什么?
全課小結:說說這節課有什么收獲?
反思:“數的奇偶性”是義務教育課程標準實驗教科書北師大版五年級上冊第一單元的教學內容。教學是在學生學習了質數、合數等知識,認識了相關的奇數、偶數概念的基礎上展開的,旨在引導學生開展自主探究活動,去發現數的奇偶性及其在加、減法運算中的變化規律,并能運用規律去解釋(或解決)生活中的一些現象和問題。
數的奇偶性比較抽象,教材將這一學習內容安排為用數學活動的形式教學,不僅能調動學生學習的積極性,而且能使學生在活動中體驗數學問題的探索性和挑戰性,培養學生科學的研究態度和學習方法。數的奇偶性的變化規律對于五年級的學生而言不難掌握。因此,本節課的著力點應放在規律探索及發現過程,在教學中積極滲透解決問題的數學思想及方法。為此,本節課圍繞以下兩個活動展開。
“活動1”的目的是引導學生從自身的生活經驗出發,結合生活情境,發現加減運算中和與差變化的奇偶性規律,進而使數學知識回歸生活,解決簡單的實際問題。
教材的處理。為使學習內容更貼近學生的生活,我們將教材提供的小船往返于南北岸的學習素材,用教室開、關燈的問題情境替換(將教材的例子安排學生自學),使學生在熟悉的生活情境中展開探究活動,較好地拉近了學生與數學、數學與生活之間的距離。
當開、關燈的人次較少時,學生用——列舉或畫示意圖的方法很快就判斷出第11個同學進教室后開關處于開啟位置,但當人次擴大到幾十甚至上百次后,直覺告訴他們,繼續“列舉”將會很麻煩,這就迫使學生不得不重新思考解決問題的方法,由此將學生的思維水平推向更高的層次。在這一環節中,通過開展小組合作學習,使學生思維的火花在與同伴交流中相互碰撞、相互啟發,逐漸將列舉法規范為列表法,并從表中很快發現規律:開、關燈的人次為奇數次時,開關處于開啟狀態,而當開關燈的人次為偶數次時,開關處于關閉狀態。由此即可判斷任意人次開、關燈后,開關置于何種狀態。
學生通過自主探究,發現了規律。但這一規律能否進一步推廣,具有怎樣的應用價值?這些問題學生沒有意識到。也不會主動去思考,因此教師必須讓學生反復練習,使其在解決問題的過程中形成經驗。啟發學生小結,對規律和經驗進行概括,能有效地促進學生認知結構的形成與提高自學能力。
“活動2”。這一環節,通過創設游戲情境,使學生在參與游戲的過程中發現游戲的“欺騙性”,從而主動去探究原因、發現規律、驗證規律,并運用規律重新修改游戲規則。在這個過程中,學生學習的主動性和探究欲被調動起來,積極參與到規律的探索活動之中。同一個盒子里的兩張卡片數相加都是偶數,那么,從兩個不同的盒子里各抽出一張卡片,它們的和總是奇數嗎?會不會是偶然呢?在老師的誘導下,學生一次次地從兩個盒子里抽出卡片驗證,結果和都是奇數。通過反復的推理、驗證、總結出“奇數+偶數=奇數、奇數+奇數=偶數、偶數+偶數=偶數”等規律。
數的奇偶性在加法運算中的變化規律被發現和驗證后,有的同學急切地想知道數的奇偶性在減法以及乘、除法中又會有怎樣的變化規律。對此,我們放手讓學生用本節課上學到的科學方法去進一步探究,如討論、查閱資料等,使學習內容從課內向課外延伸,有效拓展了學生的認知領域。
【數的奇偶性教學設計】相關文章:
《有理數》教學設計02-16
《數蛤蟆》音樂教學設計12-24
《有理數》教學設計02-16
《數和字母的運算》的教學設計12-22
《數星星的孩子》教學設計 15篇01-02
《有理數》教學設計13篇02-16
《數星星的孩子》課件設計05-04
《數的運算》教學反思09-17
積的近似數教學反思01-12
《數星星的孩子》教學反思09-29