- 相關推薦
小學五年級數學《分數的基本性質》教學設計范文(精選12篇)
作為一無名無私奉獻的教育工作者,就不得不需要編寫教學設計,教學設計是教育技術的組成部分,它的功能在于運用系統方法設計教學過程,使之成為一種具有操作性的程序。那么大家知道規范的教學設計是怎么寫的嗎?下面是小編精心整理的小學五年級數學《分數的基本性質》教學設計范文,僅供參考,大家一起來看看吧。
小學五年級數學《分數的基本性質》教學設計 1
教學目標:
1、經歷探索分數基本性質的過程,理解分數的基本性質。
2、能運用分數基本性質,把一個數化成指定分母(或分子)大小不變的分數。
3、經歷觀察、操作和討論等數學活動,體驗數學學習的樂趣及數學與日常生活密切聯系。
教學重點:
運用分數的基本性質,把一個數化成指定分母(或分子)而大小不變的分數。
教學難點:
聯系分數與除法的關系,理解分數的基本性質,溝通知識間的聯系。
教學準備:
多媒體課件長方形白紙、圓片,彩色筆等。
教學過程:
一、創設情境,激趣導入
師:同學們,新的學期到來了,你們剛入校園時覺得我們學校都發生了哪些變化,(換了新課桌,有了新的洗手間,有了文化走廊,有了開心農場),說到開心農場,還有一個小故事,開學初,校長決定把這塊地的三分之一分給四年級,六分之二分給五年級,九分之三分給六年級,四年級同學認為校長不公平,分給六年級的同學多而分給他們的少,校長聽了,笑了,誰能根據自己的預習告訴老師校長笑什么?
生1:四、五、六年級分的地一樣多。
生2:……
師:到底校長分的公平不公平,我們來做個實驗吧?
二、動手操作,探究新知
1、小組合作,實驗探究。
師:請同學們拿出你們準備好的學具,按平時的分組習慣四人一組,用你們的學具來代替這塊地,像校長一樣來分地吧。
2、匯報結果
師生交流:你們是怎樣做的?誰能說一說,請幾個同學上臺演示并口述演示過程。
生1:用三張同樣的長方形的紙來代替這塊地,分別涂出其中的三分之一,六分之二,九分之三。經過對比發現三塊地一樣多。
生2:用三個同樣的圓片分別涂出其中的三分之一,六分之二,九分之三。經過對比發現三塊地一樣多。
生3:用三條線段分別畫出其中的三分之一,六分之二,九分之三。經過對比發現三塊地一樣多。
生4:把分數化成小數,他們的商也一樣,所以三塊地的面積一樣大。
生5:……
3、課件展示,得出結論。師:校長分的和你們一樣嗎?我們再來看看小電腦是如何拼的,(利用優質資源課件演示分地的過程,師生共同觀察總結得到校長分的地一樣多。)
(設計意圖:這樣設計的目的是為了更有利于學生主體個性的發揮,在探究活動中充分發揮學生的個體的潛能,給學生足夠的時間和想象的空間,進行小組合作式的探究活動,讓學生自由的猜想,使實驗成為自己的需要,同時讓學生思考用什么方法驗證,使學生帶著濃濃的興趣進入探究新的學習活動之中。)
4、探索分數的基本性質。
師:三個年級分的地一樣多,那么你們覺得、、這三個分數的大小怎么樣?
生:相等。
師:同學們請看這組分數有什么特點?(板書=)
生:分數的分子分母發生了變化分數的大小不變。
師:請同學們從左往右仔細觀察,第一個分數和第二個分數相比分子分母發生了什么變化?第一個和第二個,第二個和第三個呢?
生:分子分母同時乘2,……
師:誰能用一句換來描述一下這個規律?
生:給分數的分子分母同時乘相同的數。(師隨著板書)
師:同學們在反過來從右往左觀察,分數的分子、分母有什么變化規律?
生:分數的分子分母同時除以相同的數。
師:像這樣給分數的分子分母同時乘或(除以)相同的數,分數的大小不變。就是我們這節課學習的新知識。(板書分數的基本性質)。
師:結合我們的預習,對于分數的基本性質同學們還有什么不同的意見?
生:0除外。
師:為什么0要除外?
生:因為分數的`分母不能為0.
師:(補充板書0除外)在分數的基本性質中,那幾個詞比較重要?
生:同時相同0除外
師:(把這三個詞用紅筆加重)同學們有沒有發現分數的基本性質和誰比較相似?
生:商不變的性質。
師:為什么?
生:我們學過分數與除法的關系,被除數相當于分子,除數相當于分母,所以他們是相通的。
師:數學知識中有許多知識如像商不變性質與分數的基本性質是一致的。因此平時學習中我們要觸類旁通,靈活運用,才會舉一反三。
三、應用新知,練習鞏固。
(一)練一練
(二)摸球游戲。老師手中有一個箱子,里面裝有許多水果,水果上面寫著不同的分數,如果你摸到一個水果,說出一個與它大小相等,而分子分母不同的新分數,這個水果就獎勵給你。
(二)判斷(搶答)
1、分數的分子、分母都乘過或除以相同的數分數的大小不變。( )
2、把的分子縮小5倍,分母也縮小5倍分數的大小不變。()
3、給分數的分子加上4,要是分數的大小,分母也要加上4。( )
(四)測一測
1、把和都化成分母是10而大小不變的分數。
2、把和都化成分子是4而大小不變的分數。
3、的分子增加2,要是分數大小不變,分母應增加幾?
四、總結。
1、這節課大家表現的都很棒,誰能說說你這節課你都知道哪些知識?
2、把板書最后補充成一條魚,希望大家擁有一雙明亮的眼睛,肚子里裝滿知識,在知識的海洋里遨游。(完成板書)
五、作業
練習冊2、4題
板書設計:
分數的基本性質
給分數的分子分母同時乘或除以相同的數(0除外)分數的大小不變。
小學五年級數學《分數的基本性質》教學設計 2
教學目標:
1、經歷探索分數的基本性質的過程,理解分數的基本性質。能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
2、經歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分數的基本性質作出簡要的、合理的`說明。培養學生的觀察、比較、歸納、總結概括能力。能根據解決問題的需要,收集有用的信息進行歸納,發展學生的歸納、推理能力。
3、經歷觀察、操作和討論等數學學習活動,使學生進一步體驗數學學習的樂趣。體驗數學與日常生活密切相關。
教學重點:
理解分數的基本性質。
教學難點:
能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數
教學過程:
一、創設情境,激趣引新,
1、師:故事引入,揭示課題
同學們,你們聽說過阿凡提的故事嗎?今天老師這里有一個“老爺爺分地”的數學故事,你們想聽嗎?(課件出示畫面)誰愿意把這個故事講給大家聽?指名讀故事(盡可能有感情地)
故事:有位老爺爺要把一塊地分給他的三個兒子。老大分到了這塊地的,老二分到了這塊地的,老三分到了這塊的。老大、老二覺得自己很吃虧,于是三人就大吵起來。剛好阿凡提路過,問清爭吵的原因后,哈哈大笑了起來,給他們講了幾句話,三兄弟就停止了爭吵。
2、師:你知道,阿凡提為什么會笑嗎?他對三兄弟講了哪些話?
3、學生猜想后暢所欲言。
4、同學們的想法真多啊!聰明的阿凡提是怎么讓三兄弟停止爭吵的?
二、探究新知,解決問題
1、動手操作、形象感知
(1)、三兄弟分的地真得一樣多嗎?你能用自己的方法證明嗎?
(2)學生獨立操作驗證。
方法1、涂、折、畫的方法
方法2、計算的方法。
方法3:商不變的性質。
(3)觀察,說說你發現了什么?
小學五年級數學《分數的基本性質》教學設計 3
【教學內容】:
【教學目標】:
1、使學生理解和掌握分數的基本性質,并會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。
2、通過猜想、驗證、歸納、總結等活動,讓學生經歷分數的基本性質的探究過程,體會舉具體事例、數形結合的思考方法,感受抽象、推理的基本數學思想。
3、在自主探究與合作交流的過程中,感受數學知識之間的聯系,激發學生探究學習的興趣,提高學生發現問題的能力。
【教學重點】:
經歷質疑、猜想、驗證、觀察、歸納的學習過程,探究分數的基本性質。
【教學難點】:
理解和掌握分數的基本性質。
【教學方法】:
本節課我綜合采用了談話法,情境創設法、引導探究法、直觀演示法,組織學生經歷觀察,猜測,得出結論。
【學法指導】:
為了有效的達成上述教學目標,秉著新課程標準的精神指導,在整個教學活動中力求充分體現學數學就是做數學,數學教學就是數學活動的教學的理念,以學生為主體,以學生發展為本。在本節課教學中,我主要采用觀察發現法、動手操作法、舉例驗證法。引導學生靜心傾聽、認真操作、積極思考、大膽表達,通過動手實踐、自主探究、合作交流等多種方式獲得廣泛的數學活動經驗。
【教學準備】:
1、媒體準備:白板
2、資源準備:PPT
【資源運用】:
1、導入——課件出示問題-——喚醒舊知
2、探究新知——PPT課件——突破重點、分解難點
3、拓展延伸
【教學過程】:
一、聯系舊知,質疑引思。
1、在自然數的范圍內,可以找到兩個大小相等但各個數位上數字又都不相同的自然數嗎?
2、在小數的范圍內,可以找到兩個大小相等但各個數位上數字又都不相同的小數嗎?
3、在分數的范圍內,可以找到兩個大小相等但分子和分母又都不相同的分數嗎?
誰能說一個與《分數的基本性質》教學設計
【喚醒學生已有知識經驗而且引發學生的數學思考,為主動探究新知積聚動力。】
二、自主操作,驗證猜想
1、初步驗證
(1)提出問題
誰能說一個與《分數的基本性質》教學設計
如果讓你證明他們確實和《分數的基本性質》教學設計
(2)匯報方法
2、深入驗證:
(1)在紙上寫上一組你認為可能相等的分數;
(2)用你喜歡的方法來證明。
(3)學生操作。
(4)匯報交流。
3、概括性質,深化理解
(1)在操作的過程中,你有什么發現?分子分母怎樣變化分數的大小才不變?
(2)歸納概括,總結規律,揭示課題。
(3)根據我們以前學過的分數與除法的關系,以及整數除法中商不變的性質,來說明分數的基本性質嗎?
4、運用規律,完成例2。
(1)理解題意
(2)要把他們化成分母是12而大小不變的分數,分子應該怎么變化?變化的根據是什么?
(3)獨立完成,交流匯報
【給學生提供開放的探究空間,滿足學生的探索欲望。】
三、知識應用,鞏固提升
1、判斷
(1)分數的分子、分母同時乘以或除以一個數,分數的大小不變。
(2)兩個分數的分子、分母都不相同,這兩個分數一定不相等。
(3)《分數的.基本性質》教學設計
2、五年級有《分數的基本性質》教學設計
3、把《分數的基本性質》教學設計
才能使分數的大小不變?
四、回顧總結,完善認知
通過本節課的學習,你有什么收獲?
【教學反思】:
1、課前準備不足,我用的20xx版做的,結果上課電腦是xxxx年版本的,展臺沒有試,影響教學流程。
2、教學機智不足,沒有關注學情,總想到20分鐘的課,時間短,有些趕,知識落實不夠扎實。
3、課堂提問語言不夠準確精煉,課堂評價不夠豐富、準確。例如開課語及結束語言有歧義。
小學五年級數學《分數的基本性質》教學設計 4
一、教學目標
1、使學生理解和掌握分數的基本性質,能應用分數的基本性質把一個分數化成指定分母而大小不變的分數。
2、學生通過觀察、比較、發現、歸納、應用等過程,經歷探究分數的基本性質的過程,初步學習歸納概括的方法。
3、激發學生積極主動的情感狀態,體驗互相合作的樂趣。
二、教學重點
1、理解、掌握分數的基本性質,能正確應用分數的基本性質。
2、自主探究出分數的基本性質。
三、教學準備
課件、正方形的紙
四、教學設計過程
(一)遷移舊知、提出猜想
1、回憶舊知
根據“288÷24=12”填空
28.8÷2.4=
2880÷240=
2.88÷0.24=
0.288÷()=12
被除數÷除數=()
說一說你是根據什么算的?引導學生回憶商不變的性質?媒體出示:商不變的性質:
被除數和除數同時乘或除以相同的數(零除外),商不變。
2、提出猜想
既然分數與除法的關系這么緊密、除法有商不變性質,那分數是否也會有這樣的性質,請大家大膽猜想一下。(學生可能根據商不變性質推導出分數的基本性質,學生匯報后投影出示:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。)
(二)驗證猜想,建構新知
1、你有什么辦法來驗證自己的猜想?(折一折、分一分、涂一涂等方法。)
2、出示學習提示。
學習提示
A、同桌合作,借助手中的學具,選擇喜歡的方法,驗證自己的猜想。
B、驗證結束后,把你的驗證方法和結論與小組同學交流。
3、匯報交流
指名3到4名同學到講臺前與全班同學交流自己的驗證方法和過程,教師相機板書。
C、總結規律
1、師:請同學們看黑板上的兩組分數,說說它們的.分子和分母分別是按什么規律變化的。指名回答,教師板書。
2、總結:對于任何一個分數,只要滿足:分數的分子和分母同時乘或除以相同的數,分數的大小就不會發生變化。
3、強調0除外。哪位同學將分數的分子和分母同時乘或除以0進行驗證的?
如果有,問他是否驗證出猜想,驗證過程中出現了什么問題,如果沒有,肯定他們的做法是對的,從而出示完整的規律:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)
教師以3/4為例說明分數的分子和分母同時乘或除以0是沒有意義的。
師:再次出示分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。這叫做分數的基本性質。(板書課題)
D教學例2
把2/3和10/24都化為分母為12而大小不變的分數。
學生獨立完成,集體訂正。
(三)練習升華
1、填空
2、下面算式對嗎?如果有錯,錯在哪里?
3、把相等的分數寫在同一個圈里。
4、老師給出一個分數,同學們迅速說出和它相等的分數。
(四)作業
教材59頁第9題。
(五)思維拓展
(六)總結延伸
師:這節課你有什么收獲?
六、板書設計
分數基本性質
分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
小學五年級數學《分數的基本性質》教學設計 5
一、教學目標
1、經歷探索分數基本性質的過程,理解分數的基本性質。
2、能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
3、經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。
二、 教學重、難點
教學重點是:分數的基本性質。
教學難點是:對分數的基本性質的理解。
三、教學方法
采用了動手做一做、觀察、比較、歸納和直觀演示的方法
四、教學過程
(一)、故事引入,揭示課題
1、教師講故事。
猴山上的猴子最喜歡吃猴王做的餅了。有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊。”猴王就把第二塊餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給猴3三塊。小朋友,你知道哪只猴子分得多嗎?
討論:哪只猴子分得的多?讓學生發表自己的意見,教師出示三塊大小一樣的餅,通過師生分餅、觀察和驗證,得出結論:三只猴子分得的餅一樣多。
引導:聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道嗎?學習了“分數的基本性質”就清楚了。(板書課題)
2、組織討論。
(1)既然三只猴子分得的餅同樣多,那么表示它們分得餅的分數是什么關系呢?這三個分數什么變了,什么沒有變?讓學生小組討論后答出:這三個分數是相等關系,14=28=312,它們平均分的份數和表示的份數也就是分數的分子和分母變化了,但分數的大小不變。
(2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數嗎?通過觀察演示得出:34=68=912。
(3)我們班有40名同學,分成了四組,每組10人。那么第一、二組學生的人數占全班學生人數的幾分之幾?引導學生用不同的分數表示,然后得出:12=24=2040。
3、引入新課:黑板上三組相等的分數有什么共同的特點?學生回答后板書:
分數的分子和分母變化了,
分數的大小不變。
它們各是按照什么規律變化的呢?我們今天就來共同研究這個變化規律。
( 二)、比較歸納,揭示規律
1、出示思考題。
比較每組分數的分子和分母:
(1)從左往右看,是按照什么規律變化的?
(2)從右往左看,又是按照什么規律變化的?
讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。
2、集體討論,歸納性質。
(1)從左往右看,由34到68,分子、分母是怎么變化的?引導學生回答出:把34的分子、分母都乘以2,就得到68。原來把單位“1”平均分成4份,表示這樣的3份,現在把分的份數和表示份數都擴大2倍,就得到68。
板書:
(2)34是怎樣變化成912的呢? 怎么填?學生回答后填空。
(3)引導口述:34的分子、分母都乘以2,得到68,分數的大小不變。
(4)在其它幾組分數中,分子、分母的變化規律怎樣?幾名學生回答后,要求學生試著歸納變化規律:分數的分子和分母都乘以相同的數,分數的大小不變。
(板書:都乘以
相同的數)
(5)從右往左看,分數的分子和分母又是按照什么規律變化的?通過分析比較每組分數的分子和分母,得出:分數的分子和分母都除以相同的數,分數的大小不變。
(板書:都除以)
(6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二個“都”字,換成“或者”)再對照教科書中的分數基本性質,讓學生說出少了什么?(少了“零除外”)討論:為什么性質中要規定“零除外”?
(板書:零除外)
(7)齊讀分數的基本性質。先讓學生找出性質中關鍵的字、詞,如“都”、“相同的數”、“零除外”等。然后要求關鍵的字詞要重讀。師生共同讀出黑板上板書的分數基本性質。
3、出示例2:把12和1024化成分母是12而大小不變的分數。
思考:要把12和1024化成分母是12而大小不變的分數,分子、分母怎么變化?變化的依據是什么?
4、討論:猴王運用什么規律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?
5、質疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。
( 三)、溝通說明,揭示聯系
通過舉例,溝通分數的基本性質與商不變性質之間的聯系。引導學生運用分數與除數的關系,以及整數除法中商不變的性質,說明分數的基本性質。
如:34=3÷4=(3×3)÷(4×3)=9÷12=912
( 四)、多層練習,鞏固深化
1、口答。(學生口答后,要求說出是怎樣想的?)
2、判斷對錯,并說明理由。(運用反饋片判斷,錯的要求說明與分數的基本性質中哪幾個字不相符。)
教學反思:
學生是學習的主人,教師是數學學習的組織者、引導者與合作者。因此數學課堂教學中必須把教師的教變成學生的學,必須深入研究學法,建立探究式的學習模式。教師應調動學生的學習積極性,向學生提供充分從事數學學習的機會,幫助他們在自主觀察、討論、合作、探究學習中真正理解和掌握基本的數學知識和技能,充分發揮學生的能動性和創造性。《分數的基本性質》的教學設計一個突出的特點就是學法的設計,從大膽猜想、實驗感知、觀察討論到概括總結,完全是為學生自主探究、合作交流的學習而設計的.。具體表現在:
1、學生在故事情境中大膽猜想。
通過創設“猴王分餅”的故事,讓學生猜測一組三個分數的大小關系,為自主探索研究“分數的基本性質”作必要的鋪墊,同時又很好地激發了學生的學習熱情。
2、學生在自主探索中科學驗證。
在學生大膽猜想的基礎上,教師適時揭示猜想內容,并對學生的猜想提出質疑,激發學生主動探究的欲望。在探索“分數的基本性質”和驗證性質時,通過創設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結論的正確性,突現出課堂教學以學生為本的特性。整個教學過程以“猜想——驗證——完善”為主線,每一步教學,都強調學生自主參與,通過規律讓學生自主發現、方法讓學生自主尋找、思路讓學生自主探索,問題讓學生自主解決,使學生獲得成功的體驗,增強自信心。
3、讓學生在分層練習中鞏固深化。
在練習的設計上,力求緊扣重點,做到新穎、多樣、層次分明,有坡度。第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3題是在第1、2題的基礎上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題通過游戲,加深學生對分數的基本性質的認識,激發學生學習的興趣,活躍課堂氣氛。這樣不僅能照顧到學生思維發展的過程,而且有效拓寬了學生的思維空間,真正做到了學以致用。
反思教學的主要過程,覺得在讓學生用各種方法驗證結論的正確性的時候,拓展得不夠,要放開手讓學生尋找多種途徑去驗證,而不能局限于老師提供的幾種方法。因為數學教學并不是要求教師教給學生問題的答案,而是教給學生思維的方法。
小學五年級數學《分數的基本性質》教學設計 6
教學目標:
結合趣味故事經歷認識分數的基本性質的過程。
初步理解分數的基本性質,會應用分數的基本性質進行分數的改寫。
經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣
教學重點:
理解掌握分數的基本性質。
教學難點:
歸納分數的性質。
學生準備:
長方形紙片。
一、創設故事情境,激發學生學習興趣并揭示課題。
編了一個唐僧師徒4人分西瓜的故事,利用孫悟空的機智聰明和豬八戒貪吃的特點。創設問題情境引起學生的探究興趣,通過把一個西瓜平均分成4塊,豬八戒吃了一塊,再把這西瓜平均分成8塊,豬八戒吃了2塊。最后把西瓜分16塊,豬八戒吃了4塊,設計這個故事的目的是使學生在已有生活經驗和分數知識的背景下,了解豬八戒沒有多吃到餅的事實,為理解分數的基本性質提供實踐經驗。在看完故事后向學生提問你了解到了哪些數學信息,想到了什么問題?
讓學生討論并用自己的方法說明八戒沒有多吃到餅。讓學生親自動手折一折、分一分、比一比,通過課件從直觀上讓學生感受到這三個分數大小是相等的。而這兩個分數的分子和分母都不相等,可分數卻相等,這其中有什么規律呢,從而來揭示課題。
二、小組合作,探究新知:
1、動手操作、形象感知
出示課件,讓學生觀察討論圖中分數的涂色部分是多少?
A、談話:請同學們拿出課前準備好的一張正方形的紙,你能先對折,并涂出它的1/4嗎?
B、追問:你能通過繼續對折,每次找一個和1/4相等的其他分數嗎?
C、學生操作,并組織交流:每次對折后,正方形被平均分成多少份。涂色部分有幾份。并思考可以用什么分數表示涂色的部分,得到的分數與1/4是否相等。交流時讓不同對折方法的學生充分展示。
2、觀察比較、探究規律
(1)通過動手操作,你認為它們誰大?請到展示臺上一邊演示一邊講一講。
(2既然這三個分數相等,那么我們可以用什么符號把它們連接起來?
(3)這三個分數的分子、分母都不相同,為什么分數的大小卻相等的?你們能找出它們的'變化規律嗎?請同學們四人為一組,討論這兩個問題
(4)通過從左到右的觀察、比較、分析,你發現了什么?
使學生認識到這四個正方形同樣大,雖然平均分的份數不一樣,但陰影部分的面積相等,四個分數也相等。課件出示連等式子。
【通過展示不同的對折方法,使學生體會解決問題方法的多樣性,拓展學生的思維。】
3、引導觀察:請大家觀察每個等式中的兩個分數,它們的分子、分母是怎樣變化的?
觀察思考后。在課文上填空,再在小組內交流。然后教師再集中指導觀察:
先從左往右看:1/4是怎樣變為與它相等的2/8的?由2/8到4/16,分子、分母又是怎樣變化的?誰用一句話說出它的變化規律?再從右往左看:4/16是怎樣變化成與之相等的2/8的?2/8、1/4呢?用一句話說出它的變化規律?
4、歸納規律
提問:綜合以上兩種變化情況,誰能用一句話概括出其中的規律?
學生交流歸納,最后全班反饋“分數的分子和分母同時乘或除以相同的數﹙0除外﹚,分數的大小不變,這是分數的基本性質”
5、小結
同學們在這節課的學習中表現得很出色,說一說你有什么收獲或體會?
【通過小結,既對整個課堂學習的內容有一個總結,又能讓學生產生后續學習和探究的欲望,將學生的學習興趣延伸到了下節課】
四、鞏固強化,拓展應用
多樣的練習可以讓學生及時鞏固所學知識,又調動了學生學習的積極性。
五、游戲找朋友。
六、布置作業:
在上這課之前,認真備課,精心設計課堂思路,準備好教具。課前,活躍氣氛。開始可能是由于農村吧,基本上,上課都是用黑板,難得一次上課時利用多媒體上課的。學生對此也是很有興趣的,特別是在創設情景的時候,很開心的投入課堂氣氛來。緊接著動手操作等步驟都很好。唯一不足是學生沒感大膽發言。對于問題,答得不是很清晰。教師讓學生主動探索,逐步獲取規律,最后也都一一的解答并歸納分數的性質。對于從左到右的變化,分子分母都變大了,但分數大小不變。從右到左,分子分母都變小,分數大小不變。從而得出規律。對于這分數的性質要讓學生抓住幾個重點詞,“都”“乘以或除以”“相同的數”“零除外”重點讓學生熟記分數的性質。多層的鞏固練習。加深學生的理解。并且能運用分數的性質完成作業。最后,讓學生輕松愉快地應用著這節課所學的知識進行找朋友的游戲。
小學五年級數學《分數的基本性質》教學設計 7
教材分析
1、分數基本性質是約分和通分的基礎,而約分、通分又是分數四則運算的重要基礎,因此,理解分數基本性質顯得尤為重要。而分數與除法的關系以及除法中的商不變規律,與這部分知識緊密聯系,是學習這部分內容的基礎。
2、教材安排了兩個學習活動,讓學生尋找相等的分數,通過活動使學生初步體驗分數的大小相等關系,為觀察發現分數的基本性質提供的豐富的學習資料,然后引導學生分別觀察這兩組相等的分數,尋找每組分數的分子、分母的變化規律,并展開充分的交流討論,在此基礎上歸納出:分數的分子和分母都乘或除以相同的數(零除外),分數的大小不變。
學情分析
學生已明確商不變規律,分數與除法的關系等知識,這些都為本課學習做了知識上的鋪墊。五年級學生已經初步養成了合作學習的習慣,并具有了一定的'分析和解決問題的能力,因此能夠在教師的引導下完成“質疑—探索——釋疑——應用”這一完整的學習過程。
因此在教學中,我主要采用引導學生探索以及小組合作學習相結合的方法,讓學生探索出分數的基本性質,并會運用分數的基本性質把一個分數化成分母不同但大小相等的分數,能有效地提高教學效率。
教學目標
經歷探索分數基本性質的過程,理解分數基本性質。
能運用分數基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。
教學重點和難點
理解分數基本性質,能運用分數基本性質轉化分數。
教學過程
一、復習導入
二、探究新知
實踐操作,探究規律
觀察發現:初步概括分數基本性質
括歸納分數基本性質
三、課堂練習
四、課堂小結
出示復習題口答卡片, 復習商不變的規律、分數與除法的關系。
講述唐僧分餅的故事:“……貪吃的豬八戒搶著說要吃這個餅的9/12,孫悟空說要吃這個餅的6/8,沙僧說要吃這個餅的3/4。同學們可知道誰吃的餅最多?”
提出問題: 這些分數都相等嗎?
觀察這組相等的分數,你發現了什么?把你的發現說給同伴聽。
分子、分母都乘或除以一個數,這個數可以是0嗎?為什么?
1、課本P43的“試一試”
2、數學游戲:說出相等的分數
3、課本P44的“練一練”第1~2、4
通過這節課的學習、你學會了那些知識
口答
小組討論
拿出準備好的圓形紙片,折一折,畫一畫、涂一涂
小組討論、交流
小組討論、交流
做練習,完成后集體交流。
說說,讀分數基本性質
復習舊知,為學習新知識作鋪墊。
將例1改編成故事 提出問題,讓學生對故事中的人物進行直觀評價,為后續探究營造良好氛圍。
讓學生通過實踐操作,激發學生參與學習探究的興趣,通過合作探究,初步感知有些分數的分子、分母不同,但分數的大小卻相等。
引導學生通過不同形式的觀察,逐步總結出存在的規律,這樣由淺入深,循序漸進,有利于學生探究學習知識。
在學生初步發現規律的基礎上,進一步理解分數的基本性質,并對分數的基本性質進行全面概括。
讓學生利用分數的基本性質解決問題,使學生對分數的基本性質理解的更深刻,同時體驗解決問題的樂趣。
對本節課的所學知識的回顧,及所學知識點的總結。
板書設計(需要一直留在黑板上主板書)分數基本性質被除數和除數同時擴大或縮小相同的倍數(零除外),商不變,這就是商不變的規律分數的分子和分母都乘或除以相同的數(零除外),分數的大小不變,這叫做分數基本性質。
教學反思:
分數的基本性質在小學階段是數運算的又一次質的飛躍與擴展,是重要的一個環節。我在引導學生觀察探究中,重視學生的主動參與,多次組織學生小組討論交流,讓每個小組成員都能充分的說說自己的看法,相互交流,相互啟迪,以感知分數的分子、分母是按一定的規律變化而分數大小不變。體現了理解與掌握數與數之間聯系、變化的觀點。
在本節課中,由于我對學困生關注度不高,使得他們在分數基本性質應用的過程中產生了困難。小組合作探究中的小組學習亦要不斷地完善。
小學五年級數學《分數的基本性質》教學設計 8
教學目標
知識目標
經歷分數基本性質的建構過程,歸納概括并掌握分數的基本性質,能運用分數的基本性質解決有關的數學問題。
能力目標培養學生觀察、分析、比較、歸納、概括及動手實踐的能力,進一步發展學生的思維。
情感目標讓學生體會數學來自生活實際的需要,感受數學與生活的聯系,激發學生對數學的興趣。
教學重點探索、發現和掌握分數的基本性質,并能運用分數的基本性質解決問題。
教學難點自主探究、歸納概括分數的基本性質。
教學過程教學預設個性修改
目標導學復習激趣目標導學自主合作匯報交流變式訓練
創境激疑
一、創設情境,提出問題
1、聽錄音故事:有一位老爺爺把一塊長方形地分給四個兒子。老大分到這塊地的,老二分到這塊地的,老三分到這塊地的,老四分到這塊地的。老大、老二、老三覺得很吃虧,于是四人就大吵起來。剛好阿凡提路過,問清爭吵的原因后,哈哈大笑起來。給他們講了幾句話,四兄弟就停止了爭吵。
2、思考:阿凡提為什么哈哈大笑?學生拿出課前準備的四張同樣大小的長方形紙片,動手操作,折出、、、,觀察、比較和驗證,得出結論:四兄弟分的地同樣多。板書:= = = 。引導學生把分數化成除法的形式,并算出它們的商,再次驗證= = =。
3、引導:四兄弟分的地同樣多,卻以為自己很吃虧,爭吵不休,引得阿凡提哈哈大笑。那么,這幾個分數的分子與分母不一樣,為什么大小都相等呢?阿凡提對四兄弟講了哪些話,四兄弟就停止了爭吵呢?其實,這里包含了一個數學知識,下面我們就來研究這個問題。
合作探究
二、自主探究,發現規律
1、學生從中任意選擇兩個分數比較一下,看看它們的分子與分母是怎樣變化的,分數的大小不變?學生自由選擇分數比較,思考分數分子與分母的變化情況。
2、組織引導學生交流所選擇的兩個分數以及它們分子與分母的變化情況。(注意引導出分子與分母同時乘同一個數和分子與分母同時除以同一個數兩種情況。)
3、引導學生把交流的等式分成兩類,并說出依據。學生思考分類,然后提問,師相機分分子與分母同時乘同一個數和分子與分母同時除以同一個數兩類板書等式。
4、引導學生觀察板書的兩類等式,思考:從這些分數分子、分母的變化中,你發現了什么?提問學生,說說自己的發現,初步概括結論:一個分數的分子、分母同時乘或除以一個相同的'數,分數的大小不變。
①學生舉例,教師引導學生操作驗證,或計算驗證。②思考:是否分數的分子、分母同時乘或除以任何一個相同的數,分數的大小都不變呢?啟發學生得出:0除外。引導學生想一想:為什么?③引導學生再次歸納,概括結論:一個分數的分子、分母同時乘或除以一個相同的數,分數的大小不變。
教學過程教學預設個性修改
合作探究
三、(課件出示)例2、把和化成分母是12而大小不變的分數。
學生獨立完成。
拓展應用我們班的同學參加了舞蹈小組,的同學參加了書法小組,哪個小組的人數多?
總結
1、這節課我們學了哪些知識?分數的基本性質是怎樣的?
2、我們是怎樣學到這些知識的?你在學習中的表現如何?
作業布置59頁8、9題
板書設計
小學五年級數學《分數的基本性質》教學設計 9
教學目標:
情感態度:
培養學生觀察、比較、抽象、概括的邏輯思維能力,并且滲透事物間相互聯系,發展變化的辯證唯物主義觀點。
知識技能:
理解分數的基本性質,并且能夠靈活應用。
過程方法:
動手操作、觀察、討論
教學重、難點:
理解并掌握分數的基本性質并靈活應用。
教具準備:
自制多媒體課件、圖(2組)、拼圖畫一幅、實物投影儀。
學具準備:
拼圖12組。
教學設計理念:
《新課標》要求,讓學生在動手操作中觀察、思考,在生動具體的情境中學習數學,參與知識的發現過程。在教學分數的基本性質時,選擇了學生喜聞樂見的游戲形式,在學生人人參與的教學情境中,讓學生發現問題——討論問題——解決問題。力求通過學生動手實踐,自主探索和合作交流的學習方式,新知識的教學,訓練學生思維,引導學生把所學數學知識應用于實際中。感受數學的價值,本課設計完全從學生發展為本,在教學中大膽的把課堂還給學生,讓學生成為課堂真正的主人。
教學過程:
一、創設情境,激趣導入。
設計意圖:讓學生在喜聞樂見的游戲情境中,以濃厚的興趣參與學習,激發學生探索數學問題欲望,并訓練學生小組合作學習的方法和習慣。
師:請看這幅拼圖漂亮嗎?老師這還有三幅漂亮的圖片(投影展示)可愛的青蛙,朝氣彭勃的太陽,誘人的蘋果,用你們靈巧的.雙手能不能把他們拼出來?請小組合作完成。同學們,準備好了嗎?我宣布:拼圖比賽現在開始。
請看拼圖要求:
1、用所給材料拼成三個完全一樣圖形。
2、用分數表示陰影部分占整幅圖的幾分之幾,并寫出來。
二、合作交流,探究規律。
設計意圖:讓學生在具體的情境中充分利用現有資源,增強學生的學習興趣,既有張揚個性的獨立思考,又有發揮集體力量的小組合作學習,培養學生敢于探索的精神與大膽嘗試的能力,同時讓學生選擇自己喜歡的方式,既尊重了學生,又激發了學生的學習興趣,體現了主體性。
(一)拼圖,寫分數。
(1)教師組織小組活動,并巡視,參與,指導小組活動。學生拼好圖后寫出分數。
(2)匯報優勝組介紹經驗,并展示作品。(體會小組合作的有效性)教師貼圖并板書分數。
(二)找分數間的大小關系。
(1)師:請同學們用自己喜歡的方法找一找每組中三個分數的大小關系,學生獨立思考后與同桌交流方法。
(2)匯報:每組中三個分數大小相等。
比較方法。
(1)看圖比較
(2)化小數比較
(3)利用商不變的性質比較
(三)探究規律
(1)每組中三個分數看似不同,實質大小相等,它們之間到底有什么聯系?小組討論探究規律。
(2)交流自己的發現。
①每組中三個分數平均分的份數不同取的分數也不同?
②分子,分母都擴大了2倍(3倍)
(3)師:分數的分子和分母怎樣變化時,分數的大小才會不變,學生自由發言,教師給予肯定和鼓勵。
(4)師結合圖依據分數的意義講解變化規律。
(5)小結分數的基本性質:強調“相同”“同時”組織討論:“相同的數”可以是哪些數?
(四)對比分數的基本性質和商不變的性質。
學生對比,說出兩個性質間的區別與聯系。
三、應用。
設計意圖:本環節所設計是由易到難,緊扣本課的重難點,練習具有針對性、實用性、開放性。通過變式練習讓學生的思維得到訓練,激發探究熱情,培養創新能力。
1、填空
(1)學生獨立思考。
(2)交流口答,并說明依據,同時訓練學生應用所學知識解決實際問題的能力。
2、比較 和 的大小。
四、游戲"找朋友”。
設計意圖:游戲的情境,形式活潑,讓學生通過大小相等的分數找到自己的朋友。游戲規則新穎而恰當,既鞏固新知又體會到數學與生活的密切聯系。
同學們拿出課前老師發給你的紙,紙上所寫分數大小相等的同學,你們是“好朋友”。請學生讀自己的分數,與他所讀分數大小相等的同學舉起來確定后手拉手離場。
小學五年級數學《分數的基本性質》教學設計 10
教學內容:
人教版五年級數學下冊57頁內容及58、59頁練習。
教學目標:
知識與技能:通過教學使學生理解的掌握分數的基本性質,能運用分數的基本性質把一個分數化成指定分母(或分子)相同而大小不變的分數,并能應用這一性質解決簡單的實際問題。
過程與方法:引導學生在參與觀察、比較、猜想、驗證等學習活動的過程中,有條理,有根據地思考、探究問題,培養學生的抽象概括能力。
情感、態度和價值觀:使學生受到數學思想方法的熏陶,培養樂于探究的學習態度。
教學重點:
理解和掌握分數的基本性質。
教學難點:
應用分數的基本性質解決問題。
教學準備:
預習生成單、作業紙、課件
教學課時:
一課時
教學過程:
一、導入新課,揭示課題
1、師:通過昨天的預習,你知道我們今天要學習什么內容?(生:分數的基本性質)
2、師:針對這個內容,同學們做了充分的預習,相信你們一定提出了不同的數學問題,現在請組長帶領組員提煉出你們組最想研究的問題。
3、指名學生匯報。
4、師:同學們,不管你們提出什么樣的問題,都與分數的基本性質有關,今天我們就帶著這些問題走進課堂。
二、檢查預習,自主探究
1、出示預習生成單:(師:我們已經預習了這部分內容,請同學們組內交流一下你們的預習成果,形成統一意見準備匯報。)
2、指名上臺展示并匯報。(師:哪個組的同學愿意最先上來展示你們的成果?)
3、(學生展示中注意分工匯報,在匯報中要注意學生用比一比的方法證明涂色部分相等,如果有用分數的意義的理解“都是相同紙的一半”或者“分子是分母的一半”理解也要給予肯定,教師應及時提出,照這樣一半的理解,提問:你能在寫出一個和他們大小一樣的分數嗎?教師及時的板演,
4、師:其他同學還有補充嗎?你們得出這個結論了嗎?
三、合作交流,探究新知
1、師:第一張紙涂色部分是這張紙的(學生說二分之一),第二張紙涂色部分是這張的(四分之二),第三張紙涂色部分是這張紙的(八分之四),涂色部分都相同,也就證明這三個分數的大小也(學生說相等),可是,它們的分子分母卻不相同,他們有沒有一定的變化規律呢?我們通過合作交流來探究這個問題。
2、出示合作要求(課件),指名學生讀一讀。
3、學生合作交流,探究學習。
4、學生匯報中教師要及時糾正學生的語言要規范,同時,可以讓小組回想補充,特別是,跳躍的兩個分數的分子和分母之間的變化規律是怎樣?
5、指導匯報,總結規律。誰能完整的說一下你們剛才總結出的規律?
6、教師歸納板書:分數的'分子和分母同時乘或者除以相同的數,分數的大小不變。
7、請同學們讀一讀這句話,想一想:還有需要補充的內容嗎?(0除外)
8、再讀一讀,說說這句話中哪個詞比較關鍵。
9、拓展深化,加深理解,完成練習,思考:分數的基本性質與商不變的性質之間的聯系。(練習一)這個過程也要看學生的生成在哪,教師及時的給予肯定。
9、教師小結:通過剛才的學習,孩子們的表現特別出彩,老師相信你們接下來的表現會更棒。
四、應用拓展,新知內化
1、出示例2,指名讀題,理解題意。
2、師:你覺得解決這道題應該利用什么知識?(生:分數的基本性質)
3、學生獨立在練習本上完成,指名板演,集體訂正。
4、小結:剛才,我們通過自主學習、小組探究知道了什么是分數的基本性質,下面就應用分數的基本性來解決一些實際問題。
五、當堂檢測
(一)、下面每組中的兩個分數是否相等?相等的在括號里畫“√”,不相等的畫“X”。
和()和()和()和()
(二)、填空。
======
(三)、把下列分數化成分母是10而大小不變的分數。
===
(四)、涂色表示出與給定分數相等的分數。
(五)、如果一堂課40分鐘,哪個班做練習用的時間長?
六、課堂小結:通過這節課的學習,你學會了什么?
板書設計:
分數的基本性質
分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
這節課最多的考慮就是分數的基本性質這個規律怎樣才能讓學生真正的夯實,怎樣設計才能讓學生水到渠成的加深了理解。在練習的設計和過渡語的設計都是關鍵。
小學五年級數學《分數的基本性質》教學設計 11
教學要求
①使學生理解分數的基本性質,并會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。
②培養學生觀察、分析和抽象概括能力。
③滲透“事物之間是相互聯系”的辯證唯物主義觀點。
教學重點理解分數的基本性質。
教學用具每位學生準備三張同樣的長方形紙條;教師:紙條、投影片等。
教學過程
一、創設情境
1、120÷30的商是多少?被除數和除數都擴大3倍,商是多少?被除數和除數都縮小10倍呢?
2、說一說:
(1)商不變的性質是什么?
(2)分數與除法的關系是什么?
3、填空。
1÷2=(1×2)÷(2×2)==。
二、揭示課題
讓學生大膽猜測:在除法里有商不變的性質,在分數里會不會也有類似的性質存在呢?這個性質是什么呢?
隨著學生的回答,教師板書課題:分數的基本性質。
三、探索研究
1、動手操作,驗證性質。
(1)讓學生拿出三張同樣的長方形紙條,分別平均分成2份、4份、6份,并分別把其中的'1份、2份、3份涂上色,把涂色的部分用分數表示出來。
(2)觀察比較后引導學生得出:==
(3)從左往右看:==
由變成,平均分的份數和表示的份數有什么變化?
把平均分的份數和表示的份數都乘以2,就得到,即==(板書)。
把平均分的份數和表示的份數都乘以3,就得到,即:==(板書)。
引導學生初步小結得出:分數的分子、分母同時乘以相同的數,分數的大小不變。
(4)從右往左看:==
引導學生觀察明確:的分子、分母同時除以2,得到。同理,的分子、分母同時除以3,也可以得到。
板書:====
讓學生再次歸納:分數的分子、分母同時除以相同的數,分數的大小不變。
(5)引導學生概括出分數的基本性質,并與前面的猜想相回應。
(6)提問:這里的“相同的數“,是不是任何數都可以呢?(補充板書:零除外)
2、分數的基本性質與商不變的性質的比較。
在除法里有商不變的性質,在分數里有分數的基本性質。
想一想:根據分數與除法的關系以及整數除法中商不變的性質,你能說明分數的基本性質嗎?
3、學習把分數化成指定分母而大小不變的分數。
(1)出示例2,幫助學生理解題意。
(2)啟發:要把和化成分母是12而大小不變的分數,分子應該怎樣變化?變化的根據是什么?
(3)讓學生在書上填空,請一名學生口答。教師板書:
4、練習。教材第108頁的做一做。
四、課堂實踐。
練習二十三的1、3題。
五、課堂小結
1、這節課我們學習了什么內容?
2、什么是分數的基本性質?
六、課堂作業
練習二十三的第2題。
七、思考練習
練習二十三的第10題。
后記:
小學五年級數學《分數的基本性質》教學設計 12
教學目標
1、進一步理解分數的基本性質;并能初步運用分數的基本性質進行約分。
2、掌握約分的含義和約分的一般方法,學會約分的書寫形式,認識最簡分數。
教學重點:
掌握約分的方法已經約分的書寫形式
教學難點:
約分時通常約成最簡分數。
教學過程:
一、復習
1、說一說:分數的基本性質
2、想一想:學習分數的基本性質有什么作用?
3、寫一寫:請你寫出和12/24相等的分數在學生交流反饋后,引導學生對相等的分數做比較:分子分母都比原來大的,分子分母都比原來小的。
二、教學例3
1、出示例3:你能寫出和12/18相等,而分子、分母都比較小的分數嗎?
學生嘗試自主思考。匯報:你是怎樣想的?先在小組里交流。
2、教學約分的含義。
師:把一個分數化成同它相等,但分子分母都比較小的分數,叫做約分。
12/186/9
12/184/6
12/182/3
教師指出:約分要注意兩點,一是約分后得到的分數要與原來的分數相等;二是約分后得到的分數的分子分母都要比原來的'分數小。
3、教學約分的書寫形式
分子分母都要同時除以幾呢?(分子分母同時除以2、3或者6。)
方法一:先分別除以12和18的公因數2、再分別除以6和9的公因數3。
方法二:分別除以12和18的最大公因數6。
規范:畫斜線的方向和商的書寫位置提示:熟練以后,約分可以直接寫成12/18=2/3
約分到什么時候就不要繼續除呢?(除到分子、分母只有公因數1為止。)
4、教學最簡分數。
像2/3的分子分母只有公因數1,這樣的分數叫做最簡分數。約分時,通常要約成最簡分數。
同步練習1:說出一個最簡分數
同步練習2:把約成最簡分數。
三、課堂練習
1、指出下面的哪些分數是最簡分數。(練一練62頁第一題)
2、分組練習(指名板演)練一練第二題
練習十一第5題
四、課堂作業:
【小學五年級數學《分數的基本性質》教學設計】相關文章:
數學《分數基本性質》教學設計09-26
分數的基本性質教學設計11-05
分數的基本性質教學設計09-26
《分數基本性質》教學設計11-10
分數的基本性質的教學設計08-27
分數的基本性質的教學設計06-28
《分數的基本性質》教學設計05-24
分數基本性質教學設計08-29
《分數基本性質》教學設計10-11