圓錐的體積教學設計

時間:2024-03-19 13:10:26 教學設計 我要投稿

圓錐的體積教學設計(精選15篇)

  作為一名教學工作者,編寫教學設計是必不可少的,教學設計是一個系統化規劃教學系統的過程。教學設計應該怎么寫呢?下面是小編收集整理的圓錐的體積教學設計,歡迎閱讀,希望大家能夠喜歡。

圓錐的體積教學設計(精選15篇)

  圓錐的體積教學設計 1

  指導思想與理論依據:

  本節課的教學內容是圓錐體積公式的推導,是一節幾何課,新課程標準指出:教學的任務是引導和幫助學生主動去從事觀察、猜想、實驗、驗證、推理與交流等數學活動,從而使學生形成自己對數學知識的理解和有效的學習策略。因此,在設計本節課時,我力求為學生創造一個自主探索與合作交流的環境,使學生能夠從情境中發現數學問題,學生會產生探究問題的需要,然后再通過自己的探索去發現和歸納公式,體驗過程。

  教學背景分析:

  (一)教學內容分析:

  1、教材內容:

  本節教材是在學生已經掌握了圓柱體體積計算及其應用和認識了圓錐的基本特征的基礎上學習的,是小學階段學習幾何知識的最后一課時內容。讓學生學好這一部分內容,有利于進一步發展學生的空間觀念,為進一步解決一些實際問題打下基礎。教材按照實驗、觀察、推導、歸納、實際應用的程序進行安排。

  2、研讀完教材后,自己的幾個問題:

  (1)在教學的過程中如何將圓錐體積推導過程與圓柱構建起聯系,還不會使學生感到生硬?

  (2)學生對三分之一好理解,怎樣去認識是等底等高的柱、錐。

  (3)大家都知道本節課必少不了學生的操作,怎么操作才是有效操作?怎么操作才能滿足學生的求知欲?怎么操作才能使學生更好體驗這個過程?

  (4)本節課的教學內容只能挖掘到圓錐的體積嗎?能不能再深入一些?

  3、自己的創新認識:

  首先,研讀教材后,我認為這幾個問題的根本是一致的都是要把握住“誰在學?怎么學?”首先,在設計本節課時我想不只是讓學生學會一個公式,而是學會一種數學學習的方式,一種數學學習的思想,體驗一種數學學習的過程。

  其次,是要提供給同學們一個可操作的空間。

  (二)學情分析:

  1、學生在前面的學習中對點、線、面、體有一定的基礎知識,同時也獲得了轉化、對應、比較等數學思想。尤其是對于高年級段的同學來講他們獲取知識的渠道十分豐富,自己又有一定探究能力,對于圓錐體積的知識相信是有一定認識的,在進行教學設計前我們應該了解到他們認識到哪兒了?了解學生的起點,為制定教學目標和選擇教學策略做好準備。

  2、自己的`認識:(結合自己在講課時發現的問題而談)

  學生能夠根據以前的學習經驗圓柱和圓錐的底面都是圓形認識到二者之間存在一定聯系,而且又是剛學完圓柱學生認識到這一點看來并不難,難的是等底等高。因此,在教學設計過程中要注意柱、錐間聯系的設計,突破學生對“圓錐的體積是與它等底等高的圓柱體積的三分之一”中的“等底等高”。

  (三)教學方式與教學手段分析:

  根據本節課的教學內容及特點,在教學設計過程中我選擇了 “操作——實驗”的學習方式。學習任何知識的最佳途徑是由自已去發現,因為這種發現理解最深,也最容易掌握其中的內在規律、性質和聯系。”我認為這也正是我在設計這節課中所要體現的核心內容。第一次學習方式的指導:體現在出示生活情境后,先讓學生進行大膽猜測“買哪個蛋糕更劃算”。本次學習方式的指導是通過學生對生活問題進行猜想,使學生認識到其中所包含的數學問題,并由此引導學生再想一想你有什么解決方法。

  (四)技術準備與教學媒體:

  在創設情境中利用多媒體出示主題圖,然后要從圖中剝離出圖形來,并演示整個實驗過程。

  教學目標設計:

  (一)教學目標:

  1、使學生掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積。

  2、通過操作——實驗的學習方式,使學生體驗圓錐體積公式的推導過程,對實驗過程進行正確歸納得到圓錐的體積公式,能利用公式正確計算,并會解決簡單的實際問題。

  3、培養學生的觀察、分析的綜合能力。

  (二)教學重點:理解圓錐體積的計算公式并能運用圓錐體積公式正確地計算圓錐的體積

  (三)教學難點:通過實驗的方法,得到計算圓錐體積的公式。

  圓錐的體積教學設計 2

  教學目標:

  1、通過實驗發現等底等高的圓柱和圓錐體積之間的關系,從而得出體積的計算公式,能運用公式解答有關實際問題。

  2、通過動手操作參與實驗,發現等底等高的圓柱和圓錐體積之間的關系,并通過猜想、探索和發現的過程,推導出圓錐的體積公式。

  3、通過實驗,引導學生探索知識的內在聯系,滲透轉化思想,感受數學方法的內在魅力,激發學生參加探索的興趣。

  教學重點: 通過實驗的方法,得到計算圓錐的體積。

  教學難點:運用圓錐的體積公式進行正確地計算。

  教學準備:等底等高的圓柱和圓錐容器模型各一個。

  教學過程:

  一、復習導入

  師:同學們,請看大屏幕(課件出示圓柱削成最大圓錐)。

  1、圓柱體積的計算公式是什么? (指名學生回答)

  2、圓錐有什么特征?

  同學們,圓柱的體積我們已經知道怎么求,那與它等底等高的圓錐的體積同學們知道怎么求嗎?讓我們一同走進圓錐的體積與等底等高的圓柱體體積有什么關系的知識課堂吧!(板書:圓錐的體積)

  二、探究新知

  課件出示等底等高的圓柱和圓錐

  1、引導學生觀察:這個圓柱和圓錐有什么相同的地方?

  學生回答:它們是等底等高的。

  猜想:

  (1)、你認為圓錐體積的大小與它的什么有關?

  (2)、你認為圓錐的體積和什么圖形的體積關系最密切?猜一猜它們的體積有什么關系?

  2、學生動手操作實驗

  (1)、用圓錐裝滿水(要裝滿但不能溢出來)往圓柱倒,倒幾次才把圓柱倒滿?

  (2)、通過實驗,你發現了什么?

  小結:通過實驗我們發現圓柱的體積是與它等底等高圓錐體積的3倍。也可以說成圓錐的體積是與它等底等高圓柱體積的三分之一 。

  3、教師課件邊演示邊敘述:現在圓錐和圓柱里都是空的。看看圓柱和圓錐有什么相同的地方?(等底等高)請同學們注意觀察, 用圓錐裝滿水往圓柱里倒,倒幾次才把圓柱倒滿?

  問:把圓柱裝滿一共倒了幾次?

  生:3次。

  師:這說明了什么?

  生:這說明圓錐的'體積是和它等底等高的圓柱體積的三分之一。(板書:圓錐的體積= 1/3×圓柱體積 )

  師:圓柱的體積等于什么?

  生:等于“底面積×高”。

  師:那么,圓錐的體積可以怎樣表示呢? (板書:圓錐的體積= 1/3×底面積×高)

  師:用字母應該怎樣表示? (V=1/3sh)

  師:在這個公式里你覺得哪里最應該注意?

  三、教學試一試

  一個圓柱形零件,底面積是170平方厘米,高是12厘米。這個零件的體積是多少立方厘米?

  四、鞏固練習

  1、計算圓錐的體積

  2、判一判

  3、算一算

  4、拓展延伸

  五、總結

  通過這節課的學習,你有什么收獲呢?

  六、板書:

  圓錐的體積=圓柱的體積×1/3

  圓錐的體積=底面積×高×1/3

  用字母表示V=1/3sh

  圓錐的體積教學設計 3

  一、教學目標

  1、知識與技能

  理解圓錐體積公式的推導過程,初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積。

  2、過程與方法

  通過操作、實驗、觀察等方式,引導學生進行比較、分析、綜合、猜測,在感知的基礎上加以判斷、推理來獲取新知識。

  3、情感態度與價值觀

  滲透知識是“互相轉化”的辨證思想,養成善于猜測的習慣,在探索合作中感受教學與我的生活的密切聯系,讓學生感受探究成功的快樂。

  二、教學重、難點

  重點:掌握圓錐的體積計算方法及運用圓錐的體積計算方法解決實際問題。

  難點:理解圓錐體積公式的推導過程。

  三、教具學具

  不同型號的圓柱、圓錐實物、容器;沙子、水、杯子;多媒體課件一套。

  四、教學流程

  (一)創設情境,提出問題

  師:五一節放假期間,老師帶著自己的小外甥去商場購物,正巧商場在搞冰淇淋促銷活動。促銷的冰淇淋有三種(課件出示三個大小不同的冰淇淋),每種都是2元錢,小外甥吵著鬧著要買一只,請同學們幫老師參考一下買哪一種合算?

  生:我選擇底面最大的;

  生:我選擇高是最高的;

  生:我選擇介于二者之間的。

  師:每個人都認為自己選擇的哪種最合算,那么誰的意見正確呢?

  生:只要求出冰淇淋的體積就可以了。

  師:冰淇淋是個什么形狀?(圓錐體)

  生:你會求嗎?

  師:通過這節課的學習,相信這個問題就很容易解答了。下面我們一起來研究圓錐的體積。并板書課題:圓錐的體積。

  (二)設疑激趣,探求新知

  師:那么你能想辦法求出圓錐的體積嗎?

  (學生猜想求圓錐體積的方法。)

  生:我們可以利用求不規則物體體積的方法,把它放進一個有水的容器里,求出上升那部分水的體積。

  師:如果這樣,你覺得行嗎?

  教師根據學生的回答做出最后的評價;

  生:老師,我們前面學過把圓轉化成長方形來研究,我想圓錐是不是也可以這樣做呢?

  師:大家猜一猜圓錐體可能會轉化成哪一種圖形,你的根據是什么?

  小組中大家商量。

  生:我們組認為可以將圓錐轉化成長方體或正方體,比如:先用橡皮泥捏一個圓錐體,再把這塊橡皮泥捏成長方體或正方體。

  師:此種方法是否可行?

  學生進行評價。

  師:哪個小組還有更好的辦法?

  生:我們組認為:圓錐體轉化成長方體后,長方體的長、寬、高與圓錐的底面和高之間沒有直接的聯系。如果將圓錐轉化成圓柱,就更容易進行研究。)

  師:既然大家都認為圓錐與圓柱的聯系最為密切,請各組先拿出學具袋的圓錐與圓柱,觀察比較他們的底與高的大小關系。

  1、各小組進行觀察討論。

  2、各小組進行交流,教師做適當的板書。

  通過學生的交流出現以下幾種情況:一是圓柱與圓錐等底不等高;二是圓柱與圓錐等高不等底;三是圓柱與圓錐不等底不等高;四是圓柱與圓錐等底等高。

  3、師啟發談話:現在我們面前擺了這么多的圓柱和圓錐,我們是否有必要把每一種情況都進行研究?能否找到一種既簡便又容易操作且能代表所有圓柱和圓錐關系的一組呢?(小組討論)

  4、小組交流,在此環節著重讓學生說出選擇等底等高的圓錐體與圓柱體進行探究的理由。

  師:我們大家一致認為應該選擇等底等高的一組,那么我們就跟求圓柱體的體積一樣,就用“底面積×高”來表示圓錐體的體積行不行?為什么?

  師:圓錐體的體積小,那你猜測一下這兩個形體的體積的大小有什么樣的關系?

  生:大約是圓柱的一半。

  生:……

  師:到底誰的意見正確呢?

  師:下面請同學們三人一組利用你桌子的學具,找出兩組等底等高的圓錐與圓柱,共同探討它們之間的體積關系驗證我們的猜想,不過在實驗前先閱讀實驗要求,(課件演示)只有目標明確,才能更好的合作。開始吧!

  要求:

  1、實驗材料,任選沙、米、水中的一種。

  2、實驗方法可選擇用圓錐向圓柱里倒,到滿為止;或用圓柱向圓錐里倒,到空為止。

  (生進行實驗操作、小組交流)

  師:

  1、誰來匯報一下,你們組是怎樣做實驗的?

  2、通過做實驗,你們發現它們有什么關系?

  生:我們利用空圓柱裝滿水到入空圓錐,三次倒完。圓柱的體積是等底等高圓錐體積的三倍。

  生:我們利用空圓錐裝滿米到入空圓柱,三次倒滿。圓錐的體積是等底等高圓柱的體積的1/3。)

  師:同學們得出這個結論非常重要,其他組也是這樣的嗎?生略

  師:請看大屏幕,看數學小博士是怎樣做的?(課件演示)

  齊讀結論:

  師:你能根據剛才我們的實驗和課件演示的.情況,也給圓錐的體積寫一個公式?

  (小組討論,得出圓錐的體積公式,得到以下公式:圓柱體積÷3=圓錐體積,則v圓錐=sh÷3即v圓錐=1/3sh

  師:同學們剛才我們得到了圓錐的體積公式,(請看課件)你能求出三種冰淇淋的體積?

  (噢!三種冰淇淋的體積原來一樣大)

  五、聯系生活,拓展運用

  本練習共有三個層次:

  1、基本練習

  (1)判斷對錯,并說明理由。

  圓柱的體積相當于圓錐體積的3倍。( )

  一個圓柱木料,把它加工成最大的圓錐,削去的部分的體積和圓錐的體積比是( )

  一個圓柱和一個圓錐等底等高體積相差21立方厘米,圓錐的體積是7立方厘米。( )

  (2)計算下面圓錐的體積。(單位:厘米)

  s=25.12 h=2.5

  r=4, h=6

  2、變形練習

  出示學校沙堆:我班數學小組的同學利用課余時間測量了那堆沙子,

  得到了以下信息:底面半徑:2米,底面直徑4米,底面周長12.56米,底面積:12.56平方米,高1.2米,

  (1)、你能根據這些信息,用不同的方法計算出這堆沙子的體積嗎?

  (2)、找一找這些計算方法有什么共同的特點? v錐=1/3sh

  (3)、準備把這堆沙填在一個長3米,寬1、5米的沙坑里,請同學們算一算能填多深?

  3、拓展練習

  一個近似圓錐形的煤堆,測得它的底面周長是31.4米,高是2.4米。如果每立方米煤重1.4噸,這堆煤大約重多少噸?

  活動五:整理歸納,回顧體驗

  (通過小結展示學生個性,學生在學習中的自我體驗,使孩子情感態度,價值觀得到升華。)

  圓錐的體積教學設計 4

  教學內容:

  教材第31--32頁,練習八第4一10題。

  教學目標:

  使學生進—步掌握圓錐的體積計算方法,能根據不同的條件計算圓錐的體積,能應用圓錐體積解決—些簡單的實際問題;

  教學重點:

  進—步掌握圓錐的體積計算方法。

  教學難點:

  根據不同的條件計算圓錐的體積。

  預習作業:

  1、一個圓錐的體積是與它等底等高的圓柱體積的();,;

  2、圓柱的體積是它等底等高的圓錐體積的();

  3、練習八第4題、第6題、第7題和第8題

  教學過程:

  預習效果檢測

  1、一個圓錐的體積是與它等底等高的圓柱體積的();

  2、圓柱的體積是它等底等高的圓錐體積的();

  3、把一個圓柱削成最大的圓錐,削去部分的體積相當于圓柱的相當于圓錐的()倍。

  二、基本練習

  1、提問:1)同學們想一想:圓錐的體積怎樣計算?

  2)口答下列各圓錐的體積。

  ①底面積3平方分米,高2分米。

  ②底面積4平方厘米,高4.5厘米。

  2、完成練習八的第4題。

  讓學生仔細讀題,并獨立完成習題。

  引導同學相互討論,并說出解題思路。

  3、完成練習八的第5題。

  引導學生仔細觀察題中的圖形,并憑自己的感覺猜想哪個圓柱的體積與圓錐的體積相等。

  教師提醒學生:底面直徑之間的倍數關系并不等于底面面積之間的倍數關系。請學生起來回答猜想的答案,給學生幾分鐘的時間,讓學生利用已知的條件進行計算驗證。

  老師和學生一起找出正確的答案是:底面直徑9厘米,高4厘米的圓柱。

  4、完成練習八的第6題。

  讓學生仔細讀題,并完成第一小題。請學生起來說出解題的經過和步驟。老師根據學生的發言總結:能削成最大的圓錐應是與這個圓形狀的木料等底等高。

  讓學生在小組內討論第(2)小題。

  讓學生自由發言,并板書討論出的有關數學問題再讓大家起進行解決,比如:削去的木料體積是多少?

  削去的木料體積是圓錐體積的`幾倍?

  削去的木料體積是整個木料的幾分之幾?

  5、完成練習八的第7、8、9題。個別板演,全班齊練,小組討論,集體評講與小結。

  6、完成練習八的第10題。引導學生合作學習,并在小組內對測量和計算的方法進行討論,選擇最優方法,讓學生在課后進行實驗。

  7、完成思考題。

  讓學生仔細讀題并在小組內討論解題的方法。請學生起來說出小組討論的結果,老師對學生的發言進行總結,并引導學生進行如下的推想:當圓錐的高是4.2厘米時,如果圓柱的高也是4.2厘米時,那么圓錐與圓柱的體積比是1:3;因此圓柱的高必須是4.2厘米的2倍,也就是8.4厘米。同理,圓柱的高是4.2厘米時,圓錐的高必須是4.2厘米的一半,也就是2.1厘米。

  課堂小結

  通過剛才的練習,想必大家對于圓錐體積公式的運用有了一定的了解,對于一些細節問題都能夠很好的注意,你能告訴大家你學習的收獲嗎?讓學生自由發言,老師補充總結。

  三、當堂達標檢測

  1、《補充習題》相關練習;

  2、反饋糾正。

  圓錐的體積教學設計 5

  教材分析

  本節課屬于空間與圖形知識的教學,是小學階段幾何知識的重難點部分,是小學學習立體圖形體積計算的飛躍,通過這部分知識的教學,可以發展學生的空間觀念、想象能力,較深入地理解幾何體體積推導方法的新領域,為學生進一步學習幾何知識奠定良好的基礎。

  本節內容是在學生了解了圓錐的特征,掌握了圓柱體積的計算方法基礎上進行教學的,教材重視類比,轉化思想的滲透,直觀引導學生經歷“猜測、類比、觀察、實驗、探究、推理、總結”的探索過程,理解掌握求圓錐體積的計算公式,會運用公式計算圓錐的體積。這樣不僅幫助學生建立空間觀念,還能培養學生抽象的邏輯思維能力,激發學生的想象力.

  設計理念

  數學課程標準中指出:應放手讓學生經歷探索的過程,在觀察、操作、推理、歸納、總結過程中掌握知識、發展空間觀念,從而提高學生自主解決問題的能力。

  教學目標

  1、知識與技能:掌握圓錐的`體積計算公式,能運用公式求圓錐的體積,并且能運用這一知識解決生活中一些簡單的實際問題。

  2、過程與方法:通過“直覺猜想——試驗探索——合作交流——得出結論——實踐運用”探索過程,獲得圓錐體積的推導過程和學習的方法。

  3、情感、態度與價值觀:培養學生勇于探索的求知精神,感受到數學來源于生活,能積極參與數學活動,自覺養成與人合作交流與獨立思考的良好習慣。

  教學重點:圓錐體積公式的理解,并能運用公式求圓錐的體積。

  教學難點:圓錐體積公式的推導

  學情分析

  學生已學習了圓柱的體積計算,在教學中采用放手讓學生操作、小組合作探討的形式,讓學生在研討中自主探索,發現問題并運用學過的圓柱知識遷移到圓錐,得出結論。所以對 于新的知識教學,他們一定能表現出極大的熱情。

  教法學法:試驗探究法 小組合作學習法

  教具學具準備:多媒體課件,等底等高圓柱圓錐各6個,水槽6個(裝有適量的水)

  教學課時 1課時

  教學流程

  一、回顧舊知識

  1、你能計算哪些規則物體的體積?

  2、你能說出圓錐各部分的名稱嗎?

  設計意圖通過對舊知識的回顧,進一步為學習新知識作好鋪墊。

  二、創設情景 激發激情

  展示磚工師傅使用的鉛錘體(圓錐),你能測試出它的體積嗎?

  設計意圖以生活中的數學的形式進行設置情景,引疑激趣遷移,激發學生好奇心和求知欲。(揭示課題:圓錐的體積)

  三、試驗探究 合作學習(探討圓柱與圓錐體積之間的關系)

  探究一:(分組試驗)圓柱與圓錐的底和高各有什么關系?

  1、猜想:猜想它們的底、高之間各有什么關系?

  2、試驗驗證猜想:每組拿出圓柱、圓錐各1個,分組試驗,試驗后記錄結果;

  3、小組匯報試驗結論,集體評議:(注意匯報出試驗步驟和結論)

  4、教師介紹數學專用名詞:等底 等高

  設計意圖通過探究一活動,初步突破了本課的難點,為探究二活動活動開展作好了鋪墊。

  探究二:(分組試驗)研討等底等高圓柱與圓錐的體積之間有什么關系?

  1、大膽猜想:等底等高圓柱與圓錐體積之間的關系

  2、試驗驗證猜想:每組拿出水槽(裝有適量的水),通過試驗,你發現了圓柱的體積和圓錐的體積有什么關系?邊試驗邊記錄試驗數據(教師巡視指導每組的試驗)

  3、小組匯報試驗結論(提醒學生匯報出試驗步驟)

  教學預設:

  (1)圓椎的體積是圓柱體積的3倍;

  (2)圓錐的體積是圓柱體積的三分之一;

  (3)當等底等高時,圓柱體積是圓錐體積的3倍,或圓錐的體積是圓柱體積的三分之一等等。

  4、通過學生匯報的試驗結論,分析歸納總結試驗結論。

  5、你能用字母表示出它們的關系嗎?要求圓錐的體積必須知道什么條件呢?(學生反復朗讀公式)

  設計意圖

  通過學生分組試驗探究,在實驗過程中自主猜想、感知、驗證、得出結論的過程,充分調動學生主動探索的意識,激發了學生的求知欲,培養了學生的動手能力,突破了本課的難點,突出了教學的重點。

  探究三:(伸展試驗---演示試驗)研討不等底等高圓柱與圓錐題的體積是否具有三分之一的關系。

  1、觀察老師的試驗,你發現了圓柱與圓錐的底和高各有什么關系?

  2、觀察老師的試驗,你發現了不等底等高的圓柱與圓錐的體積之間還有三分之一的關系嗎?

  3、學生通過觀看試驗匯報結論。

  4、教師引導學生分析歸納總結圓錐體積是圓柱體積的三分之一所存在的條件。

  5、結合探究二和探究三,進一步引導學生掌握圓錐的體積公式。

  設計意圖

  通過教師課件演示試驗,進一步讓學生明白圓錐體積是圓柱體積的三分之一所存在的條件,更進一步加強學生對圓錐體積公式理解,再次突出了本課的難點,培養了學生的觀察能,分析能力,邏輯思維能力等,進一步讓學生從感性認識上升到了理性認識。

  四、實踐運用 提升技能

  1、判斷題:題目內容見多媒體展示獨立思考---抽生匯報---說明理由---師生評議

  2、口答題:題目內容見多媒體展示獨立思考---抽生匯報---學生評議

  3、拓展運用:課本例題3學生分析題意---小組合作解答---學生解答展示---師生評議

  設計意圖通過判斷題、口答題題型的訓練,及時檢查學生對所學知識的理解程度,鞏固了圓錐體的體積公式。而拓展題型具有開放性給學生提供思維發展的空間,讓他們有跳起來摘果子的機會,以達到培養能力、發展個性的目的。

  五、談談收獲:這節課你學到了什么呢?

  六、課堂作業:

  1、做在書上作業:練習四 第4、7題

  2、坐在作業本上作業:練習四 第3題

  圓錐的體積教學設計 6

  教學內容:

  九年義務教育六年制小學數學第十二冊P32頁。

  教學目標:

  1、通過練習,使學生進一步理解和掌握圓錐體積公式,能運用公式正確迅速地計算圓錐的體積。

  2、通過練習,使學生進一步深刻理解圓柱和圓錐體積之間的關系。

  3、進一步培養學生將所學知識運用和服務于生活的能力。

  教學重點:

  靈活運用圓柱圓錐的有關知識解決實際問題。

  教學難點:

  同教學難點。

  設計理念:

  練習的過程是學生將所學知識內化、升華的過程,練習過程中既有基礎知識的合理鋪墊,又有不同程度的提高,練習的內容有明顯的階梯性。力求使不同層次的學生都學有收獲。

  教學步驟、教師活動、學生活動

  一、復習鋪墊、內化知識。

  1. 圓錐體的體積公式是什么?我們是如何推導的?

  2.圓柱和圓錐體積相互關系填空,加深對圓柱和圓錐相互關系的理解。

  (1)一個圓柱體積是18立方厘米,與它等底等高的圓錐的體積是()立方厘米。

  (2)一個圓錐的體積是18立方厘米,與它等底等高的圓柱的體積是()立方厘米。

  (3)一個圓柱與和它等底等高的圓錐的體積和是144立方厘米。圓柱的體積是()立方厘米,圓錐的.體積是()立方厘米。

  3.求下列圓錐體的體積。

  (1)底面半徑4厘米,高6厘米。

  (2)底面直徑6分米,高8厘米。

  (3)底面周長31.4厘米.高12厘米。

  4、教師根據學生練習中存在的問題,集體評講。同座位的同學先說一說圓錐體積公式的推導過程。

  學生獨立練習,互相批改,指出問題。

  學生交流一下這幾題在解題時要注意什么?

  二、豐富拓展、延伸練習。

  1.拓展練習:

  (1)把一個圓柱體木料削成一個最大的圓錐體木料,圓錐的體積占圓柱體的幾分之幾?削去的部分占圓柱體的幾分之幾?

  (2)一個圓柱體比它等底等高的圓錐體積大48立方厘米,圓柱體和圓錐體的體積各是多少?

  2.完成31頁第5題。討論下列問題:

  (1)圓柱和圓錐體積相等、底面積也相等,圓柱的高和圓錐的高有什么關系?

  (2)圓柱和圓錐體積相等、高也相等,圓柱的底面積和圓錐的底面積有什么關系?

  3.分組討論:圓柱的底面半徑是圓錐的2倍,圓錐的高是圓柱的高的2倍,圓柱和圓錐的體積之間有什么倍數關系?

  學生分組討論,教師參與其中,以有疑問的方式參與討論。

  三、充分提高,全面升華。

  1.展示一個圓錐形的沙堆,小組討論一下用什么方法可以測量出它的體積。

  2.教師給每一組一小袋米。讓學生在桌子上堆成一個近似的圓錐體,通過合作測量的形式求出它的體積。

  3.討論練習八蒙古包所占空間的大小的方法。

  (1)蒙古包是由哪幾個部分組成的?

  (2)上部的圓錐和下部的圓柱有哪些相同的地方,有哪些不同的地方?

  (3)同學們能獨立地求出蒙古包所占的空間的大小嗎?請試一試。

  4.交流一下本節課的收獲。

  學生分組討論后動手實踐并計算。

  學生先交流。

  四、全課總結,內化知識。

  1.提問:

  (1)同學們掌握了圓錐體的哪些知識?

  (2)你用圓錐體的體積的有關知識解決現實生活中的哪些問題?

  2.學有余力的同學思考38頁思考題。

  3.作業:練習八6、7、8

  學生獨立練習

  圓錐的體積教學設計 7

  教學目標:

  1、通過動手操作實驗,推導出圓錐體體積的計算公式。

  2、理解并掌握體積公式,能運用公式求圓錐的體積,并會解決簡單的實際問題。

  3、通過學生動腦、動手,培養學生的觀察、分析的綜合能力。

  教具準備:

  等底等高的圓柱體和圓錐體5套,大小不同的圓柱體和圓錐體5套、水槽5個,以及多媒體輔助教學課件。

  教學過程設計:

  一、復習舊知,做好鋪墊。

  1、認識圓柱(課件演示),并說出怎樣計算圓柱的體積?(屏幕出示:圓柱體的體積=底面積×高)

  2、口算下列圓柱的體積。

  (1)底面積是5平方厘米,高 6 厘米,體積 = ?

  (2)底面半徑是 2 分米,高10分米,體積 = ?

  (3)底面直徑是 6 分米,高10分米,體積 = ?

  3、認識圓錐(課件演示),并說出有什么特征?

  二、溝通知識、探索新知。

  教師導入:同學們,我們已經認識了圓錐,掌握了它的特征,但是,對于圓錐的學習我們不能只停留在認識上,有關圓錐的知識還有很多有待于我們去學習、去探究。這節課我們就來研究“圓錐的體積”。(板書課題)

  1、探討圓錐的體積計算公式。

  教師:怎樣推導圓錐的體積計算公式呢?在回答這個問題之前,請同學們先想一想,我們是怎樣知道圓柱體積計算公式的?

  學生回答,教師板書:

  圓柱------(轉化)------長方體

  圓柱體積計算公式--------(推導)長方體體積計算公式

  教師:借鑒這種方法,為了我們研究圓錐體體積的方便,每個組都準備了一個圓柱體和一個圓錐體。你們小組比比看,這兩個形體有什么相同的地方?學生操作比較后,再用課件演示。

  (1)提問學生:你發現到什么?(圓柱和圓錐的底和高有什么關系?)

  (學生得出:底面積相等,高也相等。)

  教師:底面積相等,高也相等,用數學語言說就叫“等底等高”。

  (板書:等底等高)

  (2)為什么?既然這兩個形體是等底等高的,那么我們就跟求圓柱體體積一樣,就用“底面積×高”來求圓錐體體積行不行?

  (不行,因為圓錐體的體積小)

  教師:(把圓錐體套在透明的圓柱體里)是啊,圓錐體的體積小,那你估計一下這兩個形體的體積大小有什么樣的倍數關系?(指名發言)

  用水和圓柱體、圓錐體做實驗。怎樣做這個實驗由小組同學自己商量,但最后要向同學們匯報,你們組做實驗的圓柱體和圓錐體在體積大小上有什么樣的倍數關系。

  (3)學生分組做實驗,并借助課件演示。

  (教師深入小組中了解活動情況,對個別小組予以適當的幫助。)

  a、誰來匯報一下,你們組是怎樣做實驗的?

  b、你們做實驗的圓柱體和圓錐體在體積大小上發現有什么倍數關系?

  (學生發言:圓柱體的體積是圓錐體體積的3倍)

  教師:同學們得出這個結論非常重要,其他組也是這樣的嗎?

  學生回答后,教師用教學課件演示實驗的全過程,并啟發學生在小組內有條理地表述圓錐體體積計算公式的推導過程。

  (板書圓錐體體積計算公式)

  教師:我們學過用字母表示數,誰來把這個公式用字母表示一下?(指名發言,板書)

  (4)學生操作:出示另外一組大小不同的圓柱體和圓錐體進行體積大小的比較,通過比較你發現什么?

  學生回答后,教師整理歸納:不是任何一個圓錐體的體積都是任何一個圓柱體體積的 。(教師拿起一個小圓錐、一個大圓柱)如果老師在這個大圓錐體里裝滿了水,往這個小圓柱體里倒,需要倒三次才能倒滿嗎?(不需要)

  為什么你們做實驗的圓錐體里裝滿了水往圓柱體里倒,要倒三次才能倒滿呢?(因為是等底等高的圓柱體和圓錐體。)

  (教師給體積公式與“等底等高”四個字上連線。)

  進一步完善體積計算公式:

  圓錐的體積=等底等高的圓柱體體積×1/3

  =底面積 × 高×1/3

  V = 1/3Sh

  教師:現在我們得到的這個結論就更完整了。(指名反復敘述公式。)

  課件出示:

  想一想,討論一下:?

  (1)通過剛才的實驗,你發現了什么?

  (2)要求圓錐的體積必須知道什么?

  學生后討論回答。

  三、應用求體積、解決問題。

  1、口答。

  (1)有一個圓柱的體積是27立方分米,與它等底等高的圓錐體積是多少?

  (2)有一個圓錐的.體積是9立方分米,與它等底等高的圓柱體積是多少?

  2、出示例題,學生讀題,理解題意,自己解決問題。

  例1、一個圓錐形的零件,底面積是19平方厘米,高是12厘米,這個零件的體積是多少?

  a、學生完成后,進行小組交流。

  b、你是怎樣想的和怎樣解決問題的。(提問學生多人)

  c、教師板書:

  1/3×19×12=76(立方厘米)

  答:它的體積是76立方厘米

  3、練習題。

  一個圓錐體,半徑為6cm,高為18cm。體積是多少?(學生在黑板上只列式,反饋。)

  我們已經學會了求圓錐體的體積,現在我們來解決有關圓錐體體積的問題。

  4、出示例2:要求學生自己讀題,理解題意。

  在打谷場上,有一個近似于圓錐形的小麥堆,測得底面直徑是4米,高是1.2米,每立方米小麥約重735千克,這堆小麥約有多少千克?(得數保留整千克)

  (1)提問:從題目中你知道了什么?

  (2)學生獨立完成后教師提問,并回答學生的質疑:

  3.14×(4÷2)2×1.2× 1/3 表示什么?為什么要先求圓錐的體積?得數保留整千克數是什么意思?….

  5、比較:例1和例2有什么不同的地方?

  (1)例1直接告訴了我們底面積,而例2沒有直接告訴,要求我們先求出底面積,再求出圓錐體積;(2)例1 是直接求體積,例2是求出體積后再求重量。

  圓錐的體積教學設計 8

  教學過程:

  一、復習導入。

  1、怎樣計算圓柱的體積?(板書公式)

  2、一個圓柱的底面積是60平方米,高15米,它的體積是多少立方米?

  3、出示一個圓錐,請學生說說圓錐的特征。

  4、導入:前面我們已經認識了圓錐,掌握了它的特征,那么圓錐的體積應怎樣計算呢?今天這節課我們就來研究這個問題。(板書課題)

  二、動手測量,大膽猜想。

  1、動手測量,找圓錐和圓柱的底和高的關系。

  師:為了我們研究圓錐體積的方便,每個小組都準備了一個圓柱和一個圓錐。下面請同學們以小組為單位,動手測量一下,你們手中的圓柱和圓錐,看看你能發現什么?

  2、學生動手測量,教師巡視。給予指導。

  3、交流得出結論:圓柱和圓錐等底等高。

  4、猜想等底等高的圓柱和圓錐的體積之間有什么關系?

  三、實驗操作,推導出圓錐體積計算公式。

  1、實驗操作。

  師:圓錐的體積到底與等底等高的圓柱的.體積之間有什么關系呢?我們就用實驗來驗證我們的猜想。每個小組都準備了米或沙,打算怎么實驗,商量好辦法后再操作。

  2、學生分組實驗,教師巡視。

  3、匯報交流,你們組是怎么做實驗的?通過實驗你發現了什么?

  4、強調等底等高。

  5小結:不是任何一個圓錐的體積都是任何一個圓柱體積的1/3,必須有前提條件。(板書結論)

  6、練習(出示)

  (1)一個圓柱的體積是1.8立方分米,與它等底等高的圓錐的體積是()立方分米。

  (2)一個圓錐的體積是1.8立方分米,與它等底等高的圓柱的體積是()立方分米。

  7、得出圓錐的體積計算公式。

  8、用字母表示圓錐的體積計算公式。

  三、鞏固練習。

  1、計算下面圓錐的體積。(只列式不計算)

  底面積是6.28平方分米,高是9分米。

  底面半徑是6厘米,高是4.5厘米。

  底面直徑是4厘米,高是4.8厘米。

  底面周長是12.56厘米,高是6厘米。

  2、填空。

  a圓錐的體積=(),用字母表示是()。

  b圓柱體積的與和它()的圓錐的體積相等。

  c一個圓柱和一個圓錐等底等高,圓柱的體積是3立方分米,圓錐的體積是()立方分米。

  d一個圓錐的底面積是12平方厘米,高是6厘米,體積是()立方厘米。

  3、判斷。(用手勢表示)

  a圓柱體的體積一定比圓錐體的體積大()

  b圓錐的體積等于和它等底等高的圓柱體的()

  c正方體、長方體、圓錐體的體積都等于底面積×高。()

  d等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米。()

  四、全課小結。

  師:今天這結課學習了什么?通過今天的學習研究你有什么收獲?

  五、解決實際問題。

  在建筑工地上,有一個近似圓錐形狀的沙堆,測得底面直徑是4米,高1.5米。每立方米沙大約重1.7噸,這堆沙約重多少噸?(得數保留整噸數)

  圓錐的體積教學設計 9

  【教學過程】

  一、復習

  1、圓柱的體積公式是什么?用字母怎樣表示?

  2、求下列各圓柱的體積。(口答)

  (1)底面積是5平方厘米,高是6厘米。

  (2)底面半徑4分米,高是10分米。

  (3)底面直徑2米,高是3米。

  師:剛才我們復習了圓柱的體積公式并應用這個公式計算出了圓柱的體積,那么圓柱和圓錐有什么關系呢?這節課我們就來研究圓錐的體積。

  師:圓錐的底面是什么形狀的?什么是圓錐的高?請拿出一個同學們自己做的圓錐講一講。

  生:圓錐的底面是圓形的。

  生:從圓錐的頂點到底面圓心的距離是圓錐的高。

  師:你能上來指出這個圓錐的高嗎?

  師:很好,因為圓錐的高我們一般無法到里面去測量,所以常常這樣量出它的高。

  師:你們看到過哪些物體是圓錐形狀的?(略)

  師:對。在生活中有很多圓錐形的物體。

  師:剛才我們已經認識了圓錐。現在我們再來研究圓錐的體積。請同學們拿出一對等底等高圓錐和圓柱。想一想用什么辦法能研究出等地等高的圓錐和圓柱的體積之間存在什么關系,然后把你的想法放在小組中交流,再分工進行實驗。下面我們采用實驗的方法來推導圓錐體的體積公式(邊說邊演示),先在圓錐內裝滿水,然后把水倒入圓柱內,看看幾次可將圓柱倒滿。現在我們分小組做實驗,大家邊做邊討論實驗要求,如有困難可以看書第23頁。

  出示小黑板:

  1、圓錐的體積和同它等底等高的圓柱的體積有什么關系?

  2、圓錐的體積怎么算?體積公式是怎樣的?

  學生分組做實驗,老師巡回指導。

  師:我們先來回答第一個問題。在你們做實驗用的圓錐的體積和同它等底等高的圓柱的體積有什么關系?

  生:圓柱的體積是圓錐體積的3倍。

  生:圓錐的體積是同它等底等高的圓柱體權的1/3。

  板書:圓錐的體積等于同它等底等高的圓柱體積的1/3。

  師:得出這個結論的'同學請舉手。(略)你們是怎么得出這個結論的呢?

  生:我們先在圓錐內裝滿沙,然后倒人圓柱內。這樣倒了三次,正好將圓柱裝滿。所以,圓錐的體積是同它等底等高的圓柱體積的1/3。

  師:說得很好。那么圓錐的體積怎么算呢?

  生:可以先算出與它等底等高的圓柱的體積,用底面積乘以高,再除以3,就是圓錐的體積。

  師:誰能說說圓錐的體積公式。

  生:圓錐的體積公式是v=1/3sh。

  師:老師也做了一個同樣實驗請同學認真看一看。想一想有什么話對老師說嗎?請看電視。

  師:請大家把書翻到第42頁,將你認為重要的字、詞、句圈圈劃劃,并說說理由。

  生:我認為"圓錐的體積v等于和它等底等高的圓柱體積的三分之一。"這句話很重要。

  生:我認為這句話中"等底等高"和"三分之一"這幾個字特別重要。

  師:大家說得很對,那么為什么這幾個字特別重要?如果底和高不相等的圓錐和圓柱有沒有三分之一這個關系呢?我們也來做個實驗。大家還有兩個是等底不等高的圓錐和圓柱,請同學們用剛才做實驗的方法試試看。

  師:等底不等高或者等高不等底的圓錐體積不是圓柱體積的1/3。師:可見圓錐的體積等于圓柱體積的三分之一的關鍵條件是等地等高。

  師:下面我們就根據"等底等高的圓錐體積是圓柱體積的1/3"這個關系來解決下列問題。

  例l :一個圓錐形零件,底面積是19平方厘米,高是12厘米。這個零件的體積是多少?

  (兩名學生板演,老師巡視)

  師:這位同學做的對不對?

  生:對!

  師:和他做的一-樣的同學請舉手。(絕大多數同學舉手)

  師:那么這位同學做錯在哪里呢?(指那位做錯的同學做的)

  生:他漏寫了1/3。用底面積乘以高算出來的是圓柱的體積,圓錐的體積還要再乘以1/3。

  師:對了。剛才我們通過實驗知道了圓錐的體積等于同它等底等高的圓柱體積的三分之一,從而推導出圓錐的體積計算公式,即v=1/3sh。我們在用這個公式計算圓錐的體積時,要特別注意,1/3不能漏掉。

  三、鞏固練習

  (1)、一個圓錐的底面積是25平方分米,高是9分米,它體積是多少?

  (2)、求圓錐的體積(看圖)

  (3)、一個圓錐的底面直徑是20厘米,高是8厘米,它體積是多少?(圖)師:三題都填對了。接下來我要考考你們,看是不是掌握了今天的知識。

  2、填空。

  (1) 一個圓錐的體積是8立方分米,底面積是2平方分米,高( )分米、。(2)圓錐形的容器高12厘米,容器中盛滿水,如將水全部倒入等底的圓柱形的器中,水面高是( )厘米。

  3、選擇

  (1) 兩個體積相等的等底的圓柱和圓錐,圓錐的高一定是圓柱高的( ) 。

  (2) 把一段圓柱形的木棒削成一個最大的圓錐,削去部分的體積是圓錐體積的( )。

  四、課堂總結

  師:今天,我們學習了什么內容?怎樣計算圓錐的體積?

  對,這節課我們認識了圓錐,并推導出了圓錐的體積計算公式。回去以后,先回憶一下今天學過的內容,想一想,在運用v=1/3sh這個公式算圓錐體積時,要特別注意什么。

  五、布置作業

  課外作業:有一個高9厘米,底面積是20平方厘米的圓柱內裝滿水,用一個與它等底等高的圓錐擠壓,最多能擠出多少水?圓柱內還剩多少水?(邊做實驗邊討論)

  【教學目的】

  1、使學生理解和掌握求圓錐體積的計算公式,并能正確求出圓錐的體積。

  2、培養學生初步的空間觀念、邏輯思維能力、動手操作能力。

  3、向學生滲透知識間"相互轉化"的辯證唯物主義思想,在聯系實際中對學生進行學習目的方面的思想教育。

  【教學重點】

  圓錐的體積計算。

  【教學難點】

  圓錐的體積公式推導。

  【教學關鍵】

  圓錐的體積是與它等底等高的圓柱體積的三分之一。

  【教具準備】

  多媒體、等底等高的圓柱和圓錐空心實物各一個,水若干。

  【學具準備】

  空心圓錐和圓柱實物各一個,沙土若干。

  圓錐的體積教學設計 10

  一、教學內容:

  義務教育課程標準實驗教科書(北師大版)六年級下冊第11~13頁

  二、教學目標:

  1、知識技能目標:

  ◆使學生探索并初步掌握圓錐體積的計算方法和推導過程;

  ◆使學生會應用公式計算圓錐的體積并解決一些實際問題。

  2、思維能力目標:

  ◆提高學生實踐操作、觀察比較、抽象概括的能力,發展空間觀念。

  3、情感態度目標:

  ◆使學生在經歷中獲得成功的體驗,體驗數學與生活的聯系。

  三、教學重點、難點:

  重點:使學生初步掌握圓錐體積的計算方法并解決一些實際問題

  難點:探索圓錐體積的計算方法和推導過程。

  四、教具準備:

  1、多媒體課件。

  2、等底等高、等底不等高、等高不等底的圓錐和圓柱共六套,沙、米,實驗報告單;帶有刻度的直尺,繩子等。

  五、教學過程:

  (一)創設情境,導入新課

  1、故事情景引發猜想

  電腦呈現出動畫情境(伴圖配音)。

  炎熱的夏天,小明和小強去“廣場超市”的 冷飲專柜買冰淇淋,圓錐形的冰淇淋標價是0.8元,圓柱形的標價2元。于是,他們兩個為買哪一種形狀的冰淇淋爭執起來。同學們,你們能幫他們解決到底買哪種形狀的冰淇淋更合算嗎?(圖中圓柱形和圓錐形的雪糕是等底等高的。)

  (學生回答自己的猜想,有說買圓錐形的,有說買圓柱形的)

  教師:學完今天的內容后,同學們就能正確解決了!

  2、圓錐實物揭示課題

  ①教師出示一筒 沙,師:將這筒沙倒在桌上,會變成什么形狀?

  (學生猜想后教師演示)

  ②師:在這堂課上,你希望學到哪些知識呢?

  (生自主回答,確立學習目標)

  ③揭題:圓錐的體積

  師:好,我們一起努力吧!

  (二)自主探索,合作交流

  1、直觀引入直覺猜想

  (1)教師演示刨鉛筆:把一支圓柱形鉛筆的筆頭刨成圓錐形。

  (2)引導學生觀察,并思考:你覺得圓錐的體積與相應的圓柱體積之間有聯系嗎?你認為有什么聯系?

  ①教師鼓勵學生大膽猜想。(生說可能的情況)

  ②師:你們是怎樣理解“相應的”一詞的?說說你的看法。

  生說后,師總結:“相應的”,即圓錐與圓柱是等底等高的。(用實物演示給生看)

  2、實驗探索發現規律

  (1)小組討論填寫材料單,有順序地領取材料

  學生分6組操作實驗,教師巡回指導。(其中4個小組的實驗材料:沙子、米、等底等高的圓柱形和圓錐形容器各一個;另外2個小組的實驗材料:沙子、米等,等底不等高和等高不等底的圓柱形和圓錐形容器各一個)

  (2)小組合作實驗,并填寫實驗報告單。

  實驗方法

  發現結果

  第一次實驗

  第二次實驗

  第三次實驗

  結論:

  (3)匯報結果,實物投影展示實驗報告單。

  (4)組際交流,得出結論:

  結論1:圓錐的體積v等于和它等底等高圓柱體積的三分之一。

  結論2:等底不等高的圓錐體與圓柱體,圓錐的體積是圓柱體積的二分之一。

  結論3:等高不等底的圓錐體與圓柱體,圓錐的體積是圓柱體積的四分之一。

  結論4:圓柱的體積正好是圓錐體積的3倍。

  結論5:圓柱的體積是等底等高的圓錐體積的3倍。

  師:同學們實驗的結論各不相同,到底哪組的結論對呢?

  (各小組紛紛敘述自己小組的實驗過程、結論;說明自己小組的準確性,學生的思維處于高度集中狀態)。

  (5)參與處理信息。

  圍繞三分之一或3倍關系的情況討論:

  師:我們先來看得出三分之一或3倍關系的這幾個小組;請小組代表說說他們是怎樣通過實驗得出這一結論的?

  (請他們拿出實驗用的器材,自己比劃、驗證這個結論。突出他們小組的圓柱和圓錐是等底等高的)

  師:其他小組得出的結論不同,是不是由于實驗過程或結論有錯誤呢?我們也請小組代表說說你們的看法。

  (生說明他們的過程和結論都是對的,只是他們的圓錐和圓柱不是即等底又等高的)。

  師:總結以上各個小組的看法,我們可以得出什么樣的結論?

  生1:圓錐的體積等于和它等底等高圓柱體積的三分之一。

  生2:圓柱的體積是等底等高的圓錐體積的3倍。

  生3:我認為第一種說法較合理,強調了圓錐體積的求法。

  師總結并板書:

  圓錐的體積等于和它等底等高的圓柱體積的1/3。

  3、啟發引導推導公式

  師:對于同學們得出的結論,你能否用數學公式來表示呢?

  生:因為圓柱的體積計算公式v=sh;所以我們可以用1/3 sh表示圓錐的體積。

  師:其他同學呢?你們認為這個同學的方法可以嗎?

  生:可以。

  師:那我們就用1/3 sh表示圓錐的體積。

  計算公式:v= 1/3 sh

  >師:(1)這里sh表示什么?為什么要乘1/3?

  (2)要求圓錐體積需要知道哪兩個條件?

  生回答,師做總結

  4、簡單應用嘗試解答

  例1:(課件出示教材情景圖)在打谷場上,有一個近似于圓錐的小麥堆,底面半徑是2米,高是1.5米。你能計算出小麥堆的體積嗎?

  (生獨立列式計算全班交流)

  (三)鞏固練習,運用拓展

  1、試一試

  一個圓錐形零件,它的底面直徑是10厘米,高是3厘米,這個零件的體積是多少立方厘米?

  2、練一練

  計算下面各圓錐的體積:

  3、實踐性練習

  師:請你們將做實驗時裝在圓柱容器里的沙(或米)倒出,堆成一個圓錐形沙(米)堆,小組合作測量計算它的體積。

  4、開放性練習

  一段圓柱形鋼材,底面直徑10厘米,高是15厘米,把它加工成一個圓錐零件。根據以上條件信息,你想提出什么問題?能得出哪些數學結論?(可小組討論)

  (四)整理歸納,回顧體驗

  1、上了這些課,你有什么收獲?(互說中系統整理)

  2、用什么方法獲取的?你認為哪組表現最棒?

  3、通過這節課的學習,你有什么新的想法?還有什么問題?

  (五)問題解決。(電腦呈現出動畫情境)

  小明和小強到底買哪種形狀的冰淇淋更合算呢?

  師:誰能幫他們解決這個問題呢?

  (學生說出買圓柱形的.冰淇淋更合算的理由。)

  六、板書設計:

  圓錐的體積

  圓錐的體積等于和它等底等高的圓柱體積的1/3。

  七、設計反思:

  《數學課程標準》指出:“有效的數學學習活動不能單純地依賴模仿和記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。”因此,在教學圓錐體積計算時,一改以前教師演示或在教師指令下實驗的做法;采取提供學生材料和機會,引導學生自主探究的學習方式。具體表現在:

  (1)密切數學與生活的聯系,富有兒童情趣。

  從學生熟悉的生活故事引入,為新知識作好鋪墊和準備。又從刨鉛筆直觀引入,引發學生大膽猜想,學生的主動性,探究性得到培養。最后的問題解決回歸于生活,實現了叢生活中來,又服務于生活的指導思想。

  (2)在經歷“錯誤”之中歷煉思維

  在平時的課堂教學中,學生往往會出現很多錯誤性的東西,比如:錯誤的認識、錯誤的過程、錯誤的結論等。很多老師不是“遇錯即糾”,就是“遇錯即批”,其實大可不必,因為錯誤之中也有可以充分利用的寶貴資源。“授人以魚,不如授之以漁”。學生學習數學不僅要學會題的解法,更要懂得解法的來龍去脈。我們要利用“錯誤”這一資源讓學生思考問題,經歷碰壁,最終找到解決問題的方法,把思考的實際過程展現給學生,讓學生經歷思維的碰撞,真正關注學習的過程,幫助他們理解和掌握數學思維和方法。

  為了使學生對“等底等高”這一條件能牢固掌握并深刻理解,在分發學具時,我有意將等底等高、等底不等高和等高不等底的三組不同的圓錐形和圓柱形容器分發給各小組,學生通過動手操作后,得出的結論大不相同,在學生匯報的過程中,意見發生了重大分歧,不同結論的各小組都堅持自己的結論準確無誤,認知出現了激烈的沖突,此時,我并沒有給出評判,而是要求學生認真去觀察、比較、發現各自小組的圓錐和圓柱有什么相同或不同的地方,通過觀察、比較,最后終于得出只有在等底等高的條件下圓錐的體積才等于圓柱體積的三分之一。這樣做既圓滿地推導出了圓錐的體積公式,又促進了學生實踐能力和批判意識的發展。而這些目標的實現,完全是利用“錯誤”這一資源產生的效果

  (3)學習過程中揭示了一般科學的研究方法:

  提出問題——直覺猜想——實驗探索——合作交流——實驗驗證——得出結論——實踐運用。這為以后的探究學習提供了一個基本方法,使學生在自主探索中掌握了知識,同時獲得了最廣泛的數學活動經驗、思想和方法,更發展了學生的反思意識、小組自我評價意識。課堂中,啟發學生提問,猜想,動手測量,注重了解決問題能力的培養,學生體驗到了成功的快樂。

  縱觀本節課的設計,運用現代教學理論,以新課程的理念指導教學,較好的處理了主導和主體、知識和能力、過程和結論的關系,充分調動了學生的積極性,引導全體學生動腦、動手、動口參與學習的全過程。整節課教學目標明確,教學層次清楚。結構嚴謹,重點突出。

  圓錐的體積教學設計 11

  教材內容的分析:本課“圓錐的認識和體積”是在學生學習了圓柱體積的基礎上進行的。教學時首先認識、理解圓錐體的特征,直觀又形象。然后通過用空心圓錐向空心圓柱的容器里倒水的實驗得到圓錐的體積公式。進而培養學生的主動探究能力和合作精神。

  教學目標:

  (1)掌握圓錐特征、引導學生通過實驗推導出圓錐體積計算公式,并能運用公式計算圓錐的體積,解決有關的實際問題;

  (2)培養學生的觀察、邏輯思維能力和初步的空間觀念;

  (3)向學生滲透知識間可以相互轉化的辯證唯物主義思想,學習將新知識轉化為原有知識的學習方法。

  教學重點:

  掌握圓錐特征、圓錐體積計算公式推導過程。

  教學難點:

  圓錐體積計算公式推導過程。

  教具、學具準備:

  等底等高的圓柱和圓錐空心實物,任意一個圓柱和圓錐,若干沙子或水。

  教學準備:

  圓錐水等底等高的圓柱、圓錐容器大三角板直尺

  教學過程:

  一、進入學習情境

  1.開始,回憶學過的立體圖形,并板書圓柱的體積公式。今天我們來認識一種新的立體圖形。

  2.觀察課本實物圖:鉛錘、谷堆、冰激凌等。

  (1)這些物體的形狀與圓柱體一樣嗎?哪里不一樣?根據這些物體的形狀,你們能給它們起個名字嗎?(引導說出“圓錐”)

  (2)在我們的身邊還有哪些物體是圓錐體?(學生舉例如路障、喇叭、跳棋)

  3、師:你知道圓錐各部分的名稱嗎?圓錐有哪些特征?

  拿出圓錐模型,介紹圓錐的特征。

  (1)用手摸一摸圓錐,你發現了什么?

  (小組內先互相說一說,后師板書:

  1、圓錐有一個頂點

  2、圓錐只有一個底面,這個底面是個圓形。

  3、側面是一個曲面,展開圖是扇形。)

  從實物圖中抽象出一個圓錐的立體圖形來,教師畫一個不帶高的圓錐圖。

  出示兩個圓錐(一個高,一個矮),觀察這兩個圓錐,你發現了什么?是由圓錐的什么決定的?(板書:高)

  下面我們來研究圓錐的高。你想知道圓錐高的哪些知識?

  1、什么是圓錐的高?

  2、幾條高?為什么只有一條高?

  3、怎么測量圓錐的高?)

  問:誰來回答第一個問題?(齊讀板書)

  再看第二個問題(1條高)指出高,怎么畫?為什么畫虛線?所以我們一般用虛線表示。

  你認為測量時要注意什么?

  (2)明確并板書:圓錐的底面是個圓,圓錐的側面是一個曲面,從圓錐的頂點到底面圓心的距離是圓錐的高。因為圓錐只有一個頂點,所以它只有一條高。

  4、了解了圓錐體的特征,我們再來研究圓錐體的體積公式。怎樣計算一個圓錐物體的體積呢?我們學習圓柱體積公式的時候借助以前學過的長方體,今天我們學習圓錐體體積也可利用剛剛學過的圓柱體的體積,大家猜一猜,圓錐的體積與圓柱體積有什么關系?

  (板書課題:圓錐的體積)

  二、自主學習

  探索圓錐體積與圓柱體積的關系。

  1、師出示實驗要求:把空圓錐裝滿水,倒入空圓柱中,測量高度,幾次裝滿,統計次數填入實驗報告單。

  2、匯報交流

  (1)小組討論:通過剛才的實驗和統計,你發現了什么?圓柱的.體積和圓錐的體積有什么關系?是不是任意兩個圓錐體和圓柱體就有這樣的關系呢?再來看實驗。

  (2)小組代表匯報交流:圓柱體積等于和它等底等高的圓錐體積的3倍,圓錐的體積等于和它等底等高的圓柱體積的三分之一。

  教師強調等底等高這個前提條件

  3、概括圓錐體積公式:

  師:圓柱的體積是:體積=底面積×高用字母表示V=Sh那么和它等底登高的圓錐體體積是圓柱體積的三分之一怎樣表示呢?

  圓錐體體積=1/3×底面積×高V=1/3sh

  三、實踐運用

  根據這個公式我們可以解決一些實際問題

  1、一個圓錐形的零件,底面積是28.26平方厘米,高是14厘米,這個零件的體積是多少立方厘米?

  一生板演,匯報

  2、一個圓錐形,底面直徑是4厘米,高6厘米,這個圓錐的體積是多少立方厘米?

  四、課堂練習

  (1)S=20平方米h=12米(2)r=10米h=15米

  (3)d=6米h=10米(4)c=62.8米h=9米

  五、小結:

  今天我們學習了圓錐體,你有哪些收獲?

  學生匯報:

  1、圓錐體的特征

  2、圓錐體的體積公式

  圓錐的體積教學設計 12

  教學目標:

  1、使學生理解圓錐體積計算的推導過程,初步掌握圓錐體積的計算公式,并能運用公式正確地計算。

  2、培養學生初步的空間觀念、邏輯思維能力、動手操作能力、創新能力。

  3、滲透知識“相互轉化”的辨證唯物主義思想和猜想、驗證等數學思想方法。

  教學重點:

  掌握圓錐體積計算的方法并運用圓錐的體積計算方法解決實際問題。

  教學難點:

  理解圓錐體積公式的推導過程,滲透猜想、驗證等數學思想方法,培養學生的實踐能力。

  教具準備:

  一對等底等高的空心圓柱、圓錐和一桶水為一份教具,準備6份。一桶沙子。

  教學過程:

  ( 一)復習舊知,課前鋪墊

  1、怎樣計算圓柱的體積?

  指名回答,教師板書:圓柱體的體積=底面積×高。

  2、一個圓柱的底面積是60平方分米,高15分米,它的體積是多少立方分米?

  指兩名板演,全班齊練,集體訂正。

  (二)提出質疑,引入新課

  圓錐有什么特征? 它的體積如何計算呢?

  今天我們就利用這些知識探討新的——怎樣計算圓錐的體積(板書課題)

  (三)動手操作 ,獲得新知

  1、探討圓錐的體積公式

  教師:怎樣探討圓錐的體積計算公式呢?在回答這個問題之前,請同學們先想一想,我們是怎樣知道圓柱體積公式的:

  學生回答,教師板書:

  圓柱——(轉化)——長方體

  圓柱體積公式——(推導)——長方體體積公式

  教師:借鑒這種方法,為了我們研究圓錐體體積的方便,每個組都準備了一個圓柱體和一個圓錐體。你們小組比比看,這兩個形體有什么相同的地方?學生操作比較。

  (1)提問學生:你發現到什么?(這個圓柱體和這個圓錐體的形狀有什么關系)

  (學生得出:底面積相等,高也相等。)

  底面積相等,高也相等,用數學語言說就叫“等底等高”。

  (板書:等底 等高)

  (2)為什么?既然這兩個形體是等底等高的,那么我們就跟求圓柱體體積一樣,就用“底面積×高”來求圓錐體體積行不行?為什么?

  教師:圓錐體的體積小,那你估計一下這兩個形體的體積大小有什么樣的關系?(指名發言)

  用水和圓柱體、圓錐體做實驗。怎樣做這個實驗由小組同學自己商量,但最后要向同學們匯報,你們組做實驗的圓柱體和圓錐體在體積大小上有什么樣的倍數關系。

  (3) 學生分組做實驗。

  誰來匯報一下,你們組是怎樣做實驗的?

  你們做實驗的圓柱體和圓錐體在體積大小上發現有什么倍數關系?(學生發言:圓柱體的體積是圓錐體體積的3倍)

  同學們得出這個結論非常重要,其他組也是這樣的嗎?

  我們學過用字母表示數,誰來把這個公式整理一下?(指名發言)

  (4)學生操作:出示另外一組大小不同的圓柱體和圓錐體進行體積大小的比較,通過比較你發現什么?

  學生回答后,教師整理歸納:不是任何一個圓錐體的體積都是任何一個圓柱體體積的三分之一。 (老師拿起一個小圓錐、一個大圓柱)如果老師把這個大圓錐體里裝滿了沙子,往這個小圓柱體里倒,倒三次能倒滿嗎?(不能)

  為什么你們做實驗的圓錐體里裝滿了水往圓柱體里倒,倒三次能倒滿呢?(因為是等底等高的圓柱體和圓錐體。)

  在等底等高的情況下。

  (老師在體積公式與“等底等高”四個字上連線。)

  現在我們得到的這個結論就更完整了。(指名反復敘述公式。)

  教師:同學們圓錐體里裝滿了水往圓柱體里倒,只倒一次,看看能不能想辦法推出計算公式?讓學生動腦動手?

  得出用尺子量圓錐里的水倒進圓柱里,水高是原來水高的1/3。

  小結:今后我們求圓錐體體積就用這種方法來計算。

  (5)應用鞏固

  1、出示例題學生讀題,理解題意,自己解決問題。

  例 一個圓錐形的零件,底面積是19平方厘米,高是12厘米,這個零件的體積是多少?

  學生完成后,進行小組交流。

  你是怎樣想的和怎樣解決問題。(提問學生多人)

  教師板書:

  1/3 ×19×12=76(立方厘米)

  答:它的體積是76立方米

  2、 練習題。

  一個圓錐體,半徑為6cm,高為18cm。體積是多少?(學生在黑板上只列式,反饋。)

  3、出示例2:要求學生自己讀題,理解題意思。

  有一個近似于圓錐的小麥堆,測得底面半徑是2米,高是1.5米。你能計算出這堆小麥的體積嗎?

  (1)提問:從題目中你知道什么?

  (2)學生獨立完成后教師提問。并回答同學的質疑:3.14×()×1.5表示什么?為什么要先求圓錐的體積?得數保留整千克數是什么意思?

  4、比較:例1和例2有什么地方不同?

  1)直接告訴了我們底面積,而(2)沒有直接告訴,要求我們先求出底面積,再求出圓錐體積。

  (四)綜合練習,發展思維

  1、一個圓錐形沙堆,高是1.5米,底面半徑是2米,每立方米沙重1.8噸。這堆沙約重多少噸?

  2、選擇題。

  每道題下面有3個答案,你認為哪個答案正確就用手指數表示。

  (1)一個圓錐體的體積是a立方米,和它等底等高的圓柱體體積是( )

  ①a立方米 ②3a立方米 ③ 9立方米

  (2)把一段圓鋼切削成一個最大的圓錐體,圓柱體體積是6立方米,圓錐體體積是( )立方米

  (1)6立方米 (2)3立方米 (3)2立方米

  四、小結:

  這節課同學們有什么收獲?你是怎樣學習的?

  五、開放性作業:

  要使等底等高的圓柱與圓錐體積相等,你有什么辦法?(生講師課件演示)

  教學反思 :

  1、這節課,沒有像傳統教學那樣,直接拿出等底等高的圓柱和圓錐容器的教具,讓學生觀察倒水實驗,而是通過師生交流、問答、猜想等形式,調動學生學習的積極性,激發學生強烈的探究欲望。學生迫切希望通過實驗來證實自己的猜想,所以做起實驗就興趣盎然。特別是用不同的方法推到出計算公式,開闊學生思維,提高學生學習積極性。

  2、通過驗證猜想這一實踐活動,讓學生運用學具操作探究、體驗活動中,去參與知識的生成過程、發展過程,主動地發現知識,體會數學知識的來龍去脈,培養學生主動獲取知識的能力。組織學生主動探索,在此教師成功地轉換了自己在課堂教學中的角色和作用,能根據學生已有的認知基礎組織和展開教學活動,充分發揮了課堂教學中學生的主體作用。

  3、小學階段學習的幾何知識是直觀幾何。小學生學習幾何知識不是靠嚴格的`論證,而主要是通過觀察、操作。根據課題的特點,本課主要采取讓學生做實驗的方法主動獲取知識。主要引導學生做了三次實驗。第一次是比較圓柱和圓錐的底和高,強調等底等高的圓柱和圓錐才有一定的倍數關系;第二次,讓學生將圓錐中的水倒入與其等底等高的圓柱之中,直至三次倒完,讓學生感受到“圓錐的體積是與它等底等高的圓柱體積的1/3,圓柱的體積是與它等底等高的圓錐體積的三倍”;第三次,用沙子實驗驗證“不是任何一個圓錐體的體積都是任何一個圓柱體體積的三分之一”。搞清了圓錐體積公式的由來,從而理解和掌握了圓錐體積公式,培養了學生的觀察、操作能力和初步的空間觀念,克服了幾何形體計算公式教學中的重結論、輕過程,重記憶、輕理解,重知識、輕能力的弊病。突出了教學重點。

  4、本課在基礎知識教學的基礎上進行呈現方式和解題策略的適當開放,較恰當地處理好了繼承和創新的關系。

  只是,這節課學生是在教師預設引導中探究。為什么要學的疑念,怎樣學的策略,可能還不夠突顯,有待于探究。"

  圓錐的體積教學設計 13

  第一課時

  教學目標:

  1、使學生理解求圓錐體積的計算公式.

  2、會運用公式計算圓錐的體積.

  3、培養學生初步的空間觀念和思維能力;讓學生認識“轉化”的思考方法。

  教學重點

  圓錐體體積計算公式的推導過程.

  教學難點

  正確理解圓錐體積計算公式.

  教學過程:

  一、鋪墊孕伏

  1、提問:

  (1)圓柱的體積公式是什么?

  (2)投影出示圓錐體的圖形,學生指圖說出圓錐的底面、側面和高.

  2、導入:同學們,前面我們已經認識了圓錐,掌握了它的特征,那么圓錐的體積怎樣計算呢?這節課我們就來研究這個問題.(板書:圓錐的體積)

  二、探究新知

  (一)指導探究圓錐體積的計算公式.

  1、教師談話:

  下面我們利用實驗的方法來探究圓錐體積的計算方法.老師給每組同學都準備了兩個圓錐體容器,兩個圓柱體容器和一些沙土.實驗時,先往圓柱體(或圓錐體)容器里裝滿沙土(用直尺將多余的沙土刮掉),倒人圓錐體(或圓柱體)容器里.倒的時候要注意,把兩個容器比一比、量一量,看它們之間有什么關系,并想一想,通過實驗你發現了什么?

  2、學生分組實驗

  學生匯報實驗結果

  ①圓柱和圓錐的底面積相等,高不相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了一次,又倒了一些,才裝滿.

  ②圓柱和圓錐的底面積不相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了兩次,又倒了一些,才裝滿.

  ③圓柱和圓錐的底面積相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了三次,正好裝滿.

  4、引導學生發現:

  圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積是和它等底等高圓柱體積的 .

  板書:

  5、推導圓錐的'體積公式:用字母表示圓錐的體積公式.板書:

  6、思考:要求圓錐的體積,必須知道哪兩個條件?

  7、反饋練習

  圓錐的底面積是5,高是3,體積是()

  圓錐的底面積是10,高是9,體積是()

  (二)算一算

  學生獨立計算,集體訂正.

  說說解題方法

  三、全課小結

  通過本節的學習,你學到了什么知識?(從兩個方面談:圓錐體體積公式的推導方法和公式的應用)

  四、課后反思

  第二課時

  教學目標:

  1、進一步掌握圓柱和圓錐體積的計算方法,能正確熟練地運用公式計算圓錐的體積。

  2、進一步培養學生運用所學知識解決實際問題的能力和動手操作的能力。

  3、進一步熟悉圓錐的體積計算

  教學難點:

  圓錐的體積計算

  教學重點:

  圓錐的體積計算

  教學過程:

  一、基本練習

  圓錐體積計算公式

  相鄰兩個面積單位之間的進率是多少?

  相鄰兩個體積單位之間的進率是多少?

  二、實際應用

  占地面積是求得什么?

  三、實踐活動

  四、課后反思

  圓錐的體積教學設計 14

  設計意圖:

  本節內容是在學生了解了圓錐的特征,掌握了圓柱體積的計算方法基礎上進行教學的,教材重視類比,轉化思想的滲透,旨在讓學生理解掌握求圓錐體積的計算公式,會運用公式計算圓錐的體積。

  我的設計是“顛倒課堂”的一次嘗試,旨在讓學生晚上在家觀看教學視頻,進行深層次的掌握學習,一次學不會,還可以反復學習,直到學會為止。這是與傳統的“白天在課室聽老師講課,晚上回家做作業”的方式正好相反的課堂模式。

  教學目標:

  1、理解掌握求圓錐體積的計算公式和推導過程,會運用公式計算圓錐的體積。

  2、會應用公式計算圓錐的體積并解決一些實際問題。

  3、幫助學生建立空間觀念,培養學生抽象的邏輯思維能力,激發學生的想象力。

  教學重點:

  使學生初步掌握圓錐體積的計算方法并解決一些實際問題

  教學難點:

  圓錐體積計算方法和推導過程。

  教學過程:

  一、復習鋪墊:

  1、揭示課題:今天我們一起來探究如何計算圓錐的體積。

  2、以舊引新:我們知道,圓柱的體積=底面積×高,字母公式:V=Sh。如何計算圓錐的體積呢?圓柱的底面是圓的,圓錐的底面也是圓的,圓錐的體積與圓柱的體積有沒有關系呢?

  二、實驗操作:

  1、請看接下來的2個實驗:

  2、實驗準備:2組等底等高的圓柱、圓錐容器;水與沙子。

  3、播放視頻:

  實驗一:我們將圓錐容器裝滿水,再往圓柱容器里面倒(倒3次),3次正好裝滿。

  實驗二:我們將圓柱容器裝滿沙,再往圓錐容器里面倒(倒3次),3次正好裝滿。

  4、通過實驗你們發現了什么?

  三、公式推導:

  1、通過兩次的實驗我們可以得出結論:

  圓柱的體積是與它等底等高的圓錐體積的3倍;也就是說圓錐的體積是與它等底等高的圓柱體積的。

  2、寫成公式:圓錐的體積=與它等底等高的圓柱體積×;因為圓柱的體積=底面積×高,所以圓錐的體積=底面積×高×;寫成字母公式:V= Sh。因此,要求圓錐的體積,必須知道圓錐的底面積與高。

  3、如果知道圓錐的底面半徑r與高h,圓錐的體積公式還可以怎樣表示呢?因為底面圓的面積s=πr2,所以圓錐的體積V= πr2h。

  4、在應用圓錐體積公式時不要忘記乘!

  四、知識應用

  1、接下來我們應用公式解決實際問題。

  題:工地上有一堆沙子,近似于一個圓錐體,沙堆底面直徑4m,高1。2m。這堆沙子大約有多少立方米?(得數保留兩位小數)

  2、分析題意:要求這堆沙子大約有多少立方米,就是求圓錐體沙堆的體積。根據公式我們需要知道沙堆的底面積與高。根據底面直徑4m,可以先求出沙堆的底面積,再用底面積乘高求出沙堆的體積。

  3、列式解答。(分步與綜合)

  五、知識小結:

  今天我們學習了圓錐的體積計算:V= Sh= πr2h。

  在應用圓錐體積公式時我們要記住乘,還要留意單位名稱是否統一!

  六、結束。

  【課堂教學設想】

  1、學生看完視頻對于實驗成功的必要條件“等底等高”、“每次倒滿”等有了一定的認識,且會躍躍欲試,為課堂的實驗操作做了鋪墊。

  2、課堂上組織學生分小組實驗:

  圓柱與圓錐等底不等高時,實驗結果會怎樣?

  圓柱與圓錐等高不等底時,實驗結果會怎樣?

  “圓錐的`體積是圓柱體積的”這一關系存在的條件是什么?

  圓錐與圓柱體積相等時,如果高相等,底面積有什么關系?如果底面積相等,高有什么關系?

  3、課堂檢測,促進知識內化。

  【教學反思】

  本節課教學目標定位為學生初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積,所以設計時力求每個環節都為教學目標服務。

  課前觀看視頻。首先回憶圓柱體積公式,通過圓柱與圓錐的底面都是圓的,讓學生猜測圓柱與圓錐體積之間的關系,然后通過兩次的實驗驗證圓錐體體積的計算方法,實現了一個“做數學”的過程。通過課外的視頻學習,能加深學生對圖形特征以及圖形之間的內在聯系的認識,進一步領會轉化的數學思想。

  課內通過小組實驗操作進一步驗證“圓錐的體積是圓柱體積的”這一關系存在的必要條件是等底等高,從而推導出圓錐的體積計算公式:V= Sh= πr2h,從而培養了學生構建知識系統的能力和知識遷移及綜合整理的能力。課堂上不再重復學習微課程中的知識,把時間花在完成練習上,通過不同的練習檢測學生的掌握情況,對暴露的問題進行有針對性的輔導,從而提高教學效率。

  圓錐的體積教學設計 15

  基本信息

  課題圓錐的體積

  作者及工作單位殷興均達州市宣漢縣南壩鎮第二中心小學

  教材分析

  《圓錐的體積》是西師版義務教育課程標準實驗教科書數學六年級下冊的內容。本節課是在學習了圓柱的體積和認識了圓錐的特征的基礎上進行,其教學內容是推導出圓錐體積公式,并能靈活運用公式解決生活中的實際問題。為了加強數學知識與學生生活的聯系,教材用實心圓錐和實心圓柱分別沒入同一個水槽中,觀察水槽中的水位分別上升了多少的實驗,激發學生探究圓錐體積的興趣。

  學情分析

  六年級學生經過幾年的數學知識學習已經初步掌握了建立空間概念的方法,有了一定的空間想象能力。學習《圓錐體積》之前,學生已經學會推導圓柱體積公式,認識了圓錐的特征。因為二者形狀的相似性很容易讓學生聯想到這兩種幾何圖形之間的聯系,從而借助轉化思想的經驗,使學生在參與探究的過程中經歷知識的建構過程。但是我校是處于城鎮邊緣的農村學校,學生的基礎較差,接受能力有限,對于本節的學習有一定的難度。

  教學目標

  1、理解圓錐的體積的推導和計算方法,并能靈活運用圓錐體積計算公式解決實際有關圓錐體積的實際應用問題。

  2、運用實驗法在合作探究中體會等底等高圓柱體積與圓錐體積內在聯系,從而完成圓錐體積公式的推導。

  3、體會數學與生活的密切聯系,感受探究成功的快樂。

  教學重點和難點

  重點:圓錐體積計算公式的推導,并能運用公式解決實際問題。

  難點:在合作探究中體會等底等高圓柱體積與圓錐體積內在聯系。

  教學過程

  教學環節

  教師活動 預設學生行為 設計意圖

  一、復習準備

  1、我們已經認識了一些幾何體,哪些幾何形體的體積我們已經學過了?

  2、圓錐有什么特點?(同時出示幻燈)

  3、在這個圓錐體中,幾號線段是圓錐體的高。

  4、引入:看來,同學們對于圓錐體的`特征掌握得很好。你們想不想繼續研究圓錐呢?

  1.長方體、正方體、圓柱。

  2.一個頂點;一個側面,展開是一個扇形;一個底面,是圓形;一條高,從頂點到底面圓心的垂直距離。

  3.學生手勢出示

  4.想

  復習內容緊扣重點,由實物到圖形,采用對比的方法,不斷加深學生對形體的認識。

  二、創設情境

  出示等底等高的實心圓錐、實心圓柱和裝有適量水的水槽(標有刻度)

  引入新課(板書課題)激發學生興趣,學生認真觀察,躍躍欲試,都想爭取參加實驗。 聯系生活實際創設情境,引發學生的好奇心,激發學習興趣。情境創設可以讓學生感受到數學與生活實際密不可分,從而感受用數學能夠解決實際問題的思想,激發學生學習數學的興趣。

  三、學習新課

  1、猜想體積大小

  實心圓錐和實心圓柱的體積有怎樣的關系圓錐體積小于圓柱體積。

  圓錐體積可能是圓柱體積的二分之一、三分之一。猜想關系,這個環節,共進行兩次猜想,第一次是猜想體積大小。第二次是讓學生憑借直覺大膽提出猜想,猜想圓錐的體積與圓柱體積的可能關系,同時在猜想中明確探索方向。學生可能猜想二分之一、三分之一等。在形成猜想后,再引導學生“實驗驗證”自己的猜想。

  2、理解等底等高

  我們研準備一個圓柱體和一個圓錐體。你們比比看,這兩個形體有什么相同的地方?

  底面積相等,高也相等,用數學語言說就叫“等底等高”。底面積相等,高也相等。為推導圓錐的體積計算公式打下基礎

  3、猜想關系、實驗驗證

  同學們有說二分之一的,有說三分之一的,爭是爭不出結果的,得用實驗來驗證。

  誰來匯報一下,你們組是怎樣做實驗的?

  你們做實驗的圓柱體和圓錐體在體積大小上有什么倍數關系?分組做實驗。

  學生匯報

  用等底等高的圓錐和圓柱,通過實驗,讓學生研究出等底等高的圓柱與圓錐之間的關系。再利用課件演示,幫助學生回顧自己的實驗過程,加深學生對實驗過程的體驗。

  4、總結公式

  我們學過用字母表示數,誰來把這個公式整理一下?(指名發言)

  V錐=V柱×1/3=sh×1/3

  “sh”表示什么?乘1/3呢?學生嘗試總結圓錐的體積計算公式。通過實驗總結結論,培養學生的歸納概括能力和語言表達能力。

  5、全面驗證

  是不是任何一個圓錐體的體積都是任何一個圓柱體體積的1/3呢?

  (課件演示)等底不等高、等高不等底

  為什么你們做實驗的圓錐體積等于圓柱體積的1/3呢?

  現在我們得到的這個結論就更完整了。(指名反復敘述公式。)

  今后我們求圓錐體體積就用這種方法來計算。(因為是等底等高的圓柱體和圓錐體。)

  在教學中,注意調動學生的學習積極性,采用分組觀察,操作,討論等方法,突出了學生的主體作用。注重強調了等底等高圓錐和圓柱的體積才有這樣的倍數關系,突出了重點。

  6、圓錐體積公式的實際應用

  (1)例:一個圓錐形的物體,底面積是11平方厘米,高是9厘米.它的體積是多少立方厘米?

  (2)一個圓錐的底面直徑是20厘米,高是6厘米,它的體積是多少?(只列式不計算)

  (3)一個圓柱與一個圓錐體積相等,底面積也相等。圓柱高15厘米,圓錐高多少厘米?

  (4)一個圓柱與一個圓錐體積相等,高也相等。圓錐的底面積是圓柱底面積的幾倍?

【圓錐的體積教學設計】相關文章:

圓錐的體積教學設計03-08

圓錐的體積教學設計03-02

《圓錐的體積》教學設計03-07

圓錐的體積教學設計03-02

《圓錐的體積》教學設計03-07

圓錐的體積的教學設計06-02

圓錐的體積教學設計06-10

《圓錐的體積》優秀教學設計03-13

《圓錐的體積練習》的教學設計06-01

小學圓錐的體積的教學設計06-19

久久综合国产中文字幕,久久免费视频国产版原创视频,欧美日韩亚洲国内综合网香蕉,久久久久久久久久国产精品免费
亚洲欧美日韩综合久久久久 | 午夜性色福利视频久久 | 五月丁香久久综合网站 | 亚洲一区波多野结衣在线 | 乱色国内精品视频在线 | 中文字幕精品aⅴ不卡 |