蘇教版分數的基本性質教學設計
作為一無名無私奉獻的教育工作者,時常需要用到教學設計,教學設計是對學業業績問題的解決措施進行策劃的過程。優秀的教學設計都具備一些什么特點呢?下面是小編為大家收集的蘇教版分數的基本性質教學設計,僅供參考,歡迎大家閱讀。
蘇教版分數的基本性質教學設計1
教學目標:
知識與技能:理解和掌握分數的基本性質,知道分數基本性質與整數除法中商不變性質的關系。能運用分數的基本性質把一個分數化成分母相同而大小不變的分數;培養學生觀察比較、抽象概括及動手實踐的能力,進一步發展學生的思維。
過程與方法:經歷探究分數基本性質的過程,感受“變與不變”,“轉化”等數學思想方法。情感態度與價值觀:激發學生積極主動的情感狀態,養成注意傾聽的習慣,體驗互助合作的樂趣。
教學重點:理解和掌握分數的基本性質,會運用分數的基本性質。
教學難點:自主探究出分數的基本性質
教學準備:PPT課件、每小組準備三個同樣大小的圓形紙片、三張完全一樣的長方形(正方形)紙、直尺、彩筆等。
教學流程:
一、故事導入激趣引思
引言:細心的同學一定聽出來了,剛剛老師播放的是哪部動畫片的主題歌?對,我們今天的學習就從西游記的故事說起。
講故事:話說唐僧師徒四人去西天取經,一路上歷經磨難。一天,他們走得又累又餓,幸好路過一個村莊,化緣得到三塊同樣大小的餅。唐僧心想:三塊餅,四個人不太好分呀!但是很快他就想到了一個分餅的方案,他對徒弟們說:我準備將第一塊餅,平均分成2份,八戒吃其中的二分之一;將第二塊餅平均分成4份,沙和尚吃其中的四分之二;將第三塊餅平均分成8份,悟空吃其中的八分之四,你們同意這樣的分配方案嗎?師父的話音未落,豬八戒便跳出來說:“我不同意這樣的分法,師父你太偏心了,憑什么猴哥吃那么多有八分之四,而我卻吃那么少才二分之一。同學們,請你們判斷一下,豬八戒說的對嗎,師父真的偏心嗎?
生發表見解。
二、自主合作探索規律
1、反饋引導:1/2=2/4=4/8。“三個徒弟分得的餅一樣多———等式———仔細瞧瞧這組分數等式的分子分母相同么?但是它們的大小卻?再用變化的'眼光瞧瞧,(師畫正反向兩箭頭)我們發現分數的分子分母改變了,什么卻沒有變?師貼板帖分數可真與眾不同呵!
2、提出探究任務:那如果我讓們動手做或者聯系生活實際想,像這樣大小相等的分數,只有一組嗎?你們能不能找出一些給老師看看?找之前請位同學為我們讀一讀小組合作學習要求:
(1)每個小組找出一組大小相等的分數,并想辦法證明這組分數大小相等。
(2)思考:在寫分數的過程中你們發現了什么規律?
組內商量一下然后開始行動!
3、小組研究教師巡視
4、全班匯報
交流評價(教師相機板書)圓紙片匯報長方形紙匯報正方形紙匯報及聯系一組人數說發現規律把每組數從左往右或者從右向左仔細觀察你能發現分子分母的怎樣的變化規律?(可以舉例說演繹推理深入)隨機更換貼圖
板書課題:分數的基本性質打出幻燈
5、反思規律看書對照找出關鍵詞要求重讀共同讀
6、引證規律:3/4=12/16剛剛動手做我們驗證了這組大小相等的分數的正確性并由此發現了分數的基本性質那你能否利用分數與除法的關系以及整數除法中商不變性質,再一次說明分數的基本性質。
三、自學例題運用規律
過渡:同學們剛剛的精彩表現展示出了你們強大的學習能力,所以在接下來的一段時間里,老師請你們自學課本96頁的例2并完成相應“練一練”。
集體評議:例2練一練1和2,請說說你的根據和想法!重點讓學生說說根據什么,分母、分子是如何變化的。
四、多層練習鞏固深化
1、判斷對錯并說明理由
2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8
2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不變的分數。
思考:分數的分母相同,能有什么作用?
3、圈分數游戲圈出與1/2相等的分數。
4、對對碰與1/2,2/3,3/4生生組組師生互動。
五、課堂小結課堂作業
結語:你看,運用數學知識玩游戲,也是樂趣無窮。這節課我們就上到這兒。
作業:余下來的時間請完成課本97頁練習十八的1-3題,做在書上。
蘇教版分數的基本性質教學設計2
教學目標:
結合趣味故事經歷認識分數的基本性質的過程。
初步理解分數的基本性質,會應用分數的基本性質進行分數的改寫。
經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。
教學重點:
理解掌握分數的基本性質。
教學難點:
歸納分數的性質。
學生準備:
長方形紙片。
一、創設故事情境,激發學生學習興趣并揭示課題。
編了一個唐僧師徒4人分西瓜的故事,利用孫悟空的機智聰明和豬八戒貪吃的特點。創設問題情境引起學生的探究興趣,通過把一個西瓜平均分成4塊,豬八戒吃了一塊,再把這西瓜平均分成8塊,豬八戒吃了2塊。最后把西瓜分16塊,豬八戒吃了4塊,設計這個故事的目的是使學生在已有生活經驗和分數知識的背景下,了解豬八戒沒有多吃到餅的事實,為理解分數的基本性質提供實踐經驗。在看完故事后向學生提問你了解到了哪些數學信息,想到了什么問題?
讓學生討論并用自己的方法說明八戒沒有多吃到餅。讓學生親自動手折一折、分一分、比一比,通過課件從直觀上讓學生感受到這三個分數大小是相等的。而這兩個分數的分子和分母都不相等,可分數卻相等,這其中有什么規律呢,從而來揭示課題。
二、小組合作,探究新知:
1、動手操作、形象感知
出示課件,讓學生觀察討論圖中分數的涂色部分是多少?
A、談話:請同學們拿出課前準備好的一張正方形的紙,你能先對折,并涂出它的1/4嗎?
B、追問:你能通過繼續對折,每次找一個和1/4相等的其他分數嗎?
C、學生操作,并組織交流:每次對折后,正方形被平均分成多少份。涂色部分有幾份。并思考可以用什么分數表示涂色的部分,得到的分數與1/4是否相等。交流時讓不同對折方法的學生充分展示。
2、觀察比較、探究規律
(1)通過動手操作,你認為它們誰大?請到展示臺上一邊演示一邊講一講。
(2既然這三個分數相等,那么我們可以用什么符號把它們連接起來?
(3)這三個分數的分子、分母都不相同,為什么分數的大小卻相等的?你們能找出它們的變化規律嗎?請同學們四人為一組,討論這兩個問題
(4)通過從左到右的觀察、比較、分析,你發現了什么?
使學生認識到這四個正方形同樣大,雖然平均分的份數不一樣,但陰影部分的面積相等,四個分數也相等。課件出示連等式子。
【通過展示不同的對折方法,使學生體會解決問題方法的多樣性,拓展學生的'思維。】
3、引導觀察:請大家觀察每個等式中的兩個分數,它們的分子、分母是怎樣變化的?
觀察思考后。在課文上填空,再在小組內交流。然后教師再集中指導觀察:
先從左往右看:1/4是怎樣變為與它相等的2/8的?由2/8到4/16,分子、分母又是怎樣變化的?誰用一句話說出它的變化規律?再從右往左看:4/16是怎樣變化成與之相等的2/8的?2/8、1/4呢?用一句話說出它的變化規律?
4、歸納規律
提問:綜合以上兩種變化情況,誰能用一句話概括出其中的規律?
學生交流歸納,最后全班反饋“分數的分子和分母同時乘或除以相同的數﹙0除外﹚,分數的大小不變,這是分數的基本性質”
5、小結
同學們在這節課的學習中表現得很出色,說一說你有什么收獲或體會?
【通過小結,既對整個課堂學習的內容有一個總結,又能讓學生產生后續學習和探究的欲望,將學生的學習興趣延伸到了下節課】
三、鞏固強化,拓展應用
多樣的練習可以讓學生及時鞏固所學知識,又調動了學生學習的積極性。
四、游戲找朋友。
五、布置作業:
在上這課之前,認真備課,精心設計課堂思路,準備好教具。課前,活躍氣氛。開始可能是由于農村吧,基本上,上課都是用黑板,難得一次上課時利用多媒體上課的。學生對此也是很有興趣的,特別是在創設情景的時候,很開心的投入課堂氣氛來。緊接著動手操作等步驟都很好。唯一不足是學生沒感大膽發言。對于問題,答得不是很清晰。教師讓學生主動探索,逐步獲取規律,最后也都一一的解答并歸納分數的性質。對于從左到右的變化,分子分母都變大了,但分數大小不變。從右到左,分子分母都變小,分數大小不變。從而得出規律。對于這分數的性質要讓學生抓住幾個重點詞,“都”“乘以或除以”“相同的數”“零除外”重點讓學生熟記分數的性質。多層的鞏固練習。加深學生的理解。并且能運用分數的性質完成作業。最后,讓學生輕松愉快地應用著這節課所學的知識進行找朋友的游戲。
蘇教版分數的基本性質教學設計3
教學要求
①使學生理解分數的基本性質,并會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。
②培養學生觀察、分析和抽象概括能力。
③滲透“事物之間是相互聯系”的辯證唯物主義觀點。
教學重點
理解分數的基本性質。
教學用具
每位學生準備三張同樣的長方形紙條;教師:紙條、投影片等。
教學過程
一、創設情境
1、120÷30的商是多少?被除數和除數都擴大3倍,商是多少?被除數和除數都縮小10倍呢?
2、說一說:
(1)商不變的性質是什么?
(2)分數與除法的關系是什么?
3、填空。
1÷2=(1×2)÷(2×2)=。
二、揭示課題
讓學生大膽猜測:在除法里有商不變的性質,在分數里會不會也有類似的性質存在呢?這個性質是什么呢?
隨著學生的回答,教師板書課題:分數的基本性質。
三、探索研究
1、動手操作,驗證性質。
(1)讓學生拿出三張同樣的長方形紙條,分別平均分成2份、4份、6份,并分別把其中的1份、2份、3份涂上色,把涂色的部分用分數表示出來。
(2)觀察比較后引導學生得出:
(3)從左往右看:
由變成,平均分的份數和表示的份數有什么變化?
把平均分的份數和表示的份數都乘以2,就得到,即(板書)。
把平均分的份數和表示的份數都乘以3,就得到,即:(板書)。
引導學生初步小結得出:分數的分子、分母同時乘以相同的數,分數的大小不變。
(4)從右往左看:
引導學生觀察明確:的分子、分母同時除以2,得到。同理,的分子、分母同時除以3,也可以得到。
板書:
讓學生再次歸納:分數的分子、分母同時除以相同的數,分數的大小不變。
(5)引導學生概括出分數的基本性質,并與前面的猜想相回應。
(6)提問:這里的“相同的數“,是不是任何數都可以呢?(補充板書:零除外)
2、分數的基本性質與商不變的性質的比較。
在除法里有商不變的性質,在分數里有分數的基本性質。
想一想:根據分數與除法的關系以及整數除法中商不變的性質,你能說明分數的基本性質嗎?
3、學習把分數化成指定分母而大小不變的分數。
(1)出示例2,幫助學生理解題意。
(2)啟發:要把和化成分母是12而大小不變的分數,分子應該怎樣變化?變化的根據是什么?
(3)讓學生在書上填空,請一名學生口答。教師板書:
4、練習。教材第108頁的做一做。
四、課堂實踐。
練習二十三的1、3題。
五、課堂小結
1、這節課我們學習了什么內容?
2、什么是分數的基本性質?
六、課堂作業
練習二十三的第2題。
七、思考練習
練習二十三的第10題。
教學反思:
“分數的基本性質”是西師版小學數學五年級下冊的內容,它是約分,通分的依據,對于以后學習比的基本性質也有很大的幫助,所以,分數的基本性質是本單元的教學重點課。這節課我大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到的不僅是數學基本知識,更重要的是數學學習的方法,從而激勵學生進一步地主動學習,產生我會學的成就感。目的是讓學生學會學習,學會思考,學會創造,進而培養學生用數學的思想方法,思考并解決在實際生活中所遇到的各種問題,這也是學生適應未來生活必須的基本素質。
這節課是在學生已掌握了商不變的性質之后,并在已有應用經驗的基礎上進行的,我是這樣設計教學的:
1、通過商不變的性質、除法與分數的關系的復習,幫助學生意識到商不變的變規律與新知識的聯系,為新知識的'學習做好必要的準備。讓學生根據商不變的性質大膽猜想,分數的基本性質是什么?說出自己的想法。
2、充分發揮學生主體作用,引導學生自主探究。讓學生通過折紙游戲,操作、觀察、比較,驗證自己的猜想。涂色部分可用不同的分數表示,從而培養學生的動手能力,以及觀察問題、解決問題的能力。
3、運用知識,解決實際問題。為了把知識轉化為能力,練習的設計注意了典型性、多樣性、深刻性、靈活性。歸納總結出分數的基本性質后,先進行基本練習,深化對分數的基本性質認識。在學完整個新知以后,在進行綜合練習,鞏固提高。通過應用拓展,使學生加深對分數的基本性質的理解,并培養學生運用所學的知識解決實際問題的能力。
4、0除外的環節設計。在學生歸納出分數的基不性質后,缺少0除外這個難點,我設計了判斷一個分數的分子和分母同時乘0,讓學生通過練習,馬上想到0不能做除數,在分數中分母不能為0,引出:分子和分母同時乘或除以相同的數,必須0除外,突破難點。
【分數的基本性質教學設計】相關文章:
《分數的基本性質》教學設計05-24
分數基本性質教學設計02-15
分數的基本性質教學設計08-11
分數的基本性質教學設計04-05
《分數的基本性質》教學設計09-23
分數的基本性質教學設計08-25
《分數的基本性質》教學設計優秀05-09
分數的基本性質教學設計優秀10-30
《分數基本性質》教學設計(精選8篇)03-25
分數的基本性質教學設計15篇04-05