- 相關推薦
高一函數的課件
高一函數課件【1】
重點難點教學:
1.正確理解映射的概念;
2.函數相等的兩個條件;
3.求函數的定義域和值域。
一.教學過程:
1. 使學生熟練掌握函數的概念和映射的定義;
2. 使學生能夠根據已知條件求出函數的定義域和值域; 3. 使學生掌握函數的三種表示方法。
二.教學內容:
1.函數的定義
設A、B是兩個非空的數集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數()fx和它對應,那么稱:fAB為從集合A到集合B的一個函數(function),記作:
(),yfxxA
其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數值,函數值的集合{()|}fxxA叫值域(range)。顯然,值域是集合B的子集。
注意:
、 “y=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;
、诤瘮捣枴皔=f(x)”中的f(x)表示與x對應的函數值,一個數,而不是f乘x.
2.構成函數的三要素 定義域、對應關系和值域。
3、映射的`定義
設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意
一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A→B為從 集合A到集合B的一個映射。
4. 區間及寫法:
設a、b是兩個實數,且a
(1) 滿足不等式axb的實數x的集合叫做閉區間,表示為[a,b];
(2) 滿足不等式axb的實數x的集合叫做開區間,表示為(a,b);
5.函數的三種表示方法 ①解析法 ②列表法 ③圖像法
高一函數課件【2】
教學目標:
1、知識目標:使學生理解指數函數的定義,初步掌握指數函數的圖像和性質。
2、能力目標:通過定義的引入,圖像特征的觀察、發現過程使學生懂得理論與實踐 的辯證關系,適時滲透分類討論的數學思想,培養學生的探索發現能力和分析問題、解決問題的能力。
3、情感目標:通過學生的參與過程,培養他們手腦并用、多思勤練的良好學習習慣和勇于探索、鍥而不舍的治學精神。
教學重點、難點:
1、 重點:指數函數的圖像和性質
2、 難點:底數 a 的變化對函數性質的影響,突破難點的關鍵是利用多媒體動感顯示,通過顏色的區別,加深其感性認識。
教學方法:引導——發現教學法、比較法、討論法
教學過程:
一、事例引入
T:上節課我們學習了指數的運算性質,今天我們來學習與指數有關的函數。什么是函數?
S: --------
T:主要是體現兩個變量的關系。我們來考慮一個與醫學有關的例子:大家對“非典”應該并不陌生,它與其它的傳染病一樣,有一定的潛伏期,這段時間里病原體在機體內不斷地繁殖,病原體的繁殖方式有很多種,分裂就是其中的一種。我們來看一種球菌的分裂過程:
C:動畫演示(某種球菌分裂時,由1分裂成2個,2個分裂成4個,------。一個這樣的球菌分裂x次后,得到的球菌的個數y與x的函數關系式是: y = 2 x )
S,T:(討論) 這是球菌個數 y 關于分裂次數 x 的函數,該函數是什么樣的形式(指數形式),
從 函數特征分析:底數 2 是一個不等于 1 的正數,是常量,而指數 x 卻是變量,我們稱這種函數為指數函數——點題。
二、指數函數的定義
C:定義: 函數 y = a x (a>0且a≠1)叫做指數函數, x∈R.。
問題 1:為何要規定 a > 0 且 a ≠1?
S:(討論)
C: (1)當 a<0 時,a x 有時會沒有意義,如 a=﹣3 時,當x=
就沒有意義;
(2)當 a=0時,a x 有時會沒有意義,如x= - 2時,
(3)當 a = 1 時, 函數值 y 恒等于1,沒有研究的必要。
鞏固練習1:
下列函數哪一項是指數函數( )
A、 y=x 2 B、y=2x 2 C、y= 2 x D、y= -2 x
【高一函數的課件】相關文章:
高一函數課件02-21
高一數學函數課件02-23
高一函數的奇偶性課件02-20
高一數學指數函數課件02-22
初中函數課件03-19
函數教學課件03-31
高一指數函數課件02-21
對數函數課件03-19
指數函數課件03-19