數學不等式課件
關于 數學不等式課件大家了解過多少呢?可能很多人都不是很清楚,下面就是小編分享的 數學不等式課件范文,一起來看一下吧。
一、本章的教學目標、要求及在本書的地位和作用
從課標看,方程與不等式是同屬“數與代數”領域內統一標題下的兩部分內容,它們之間有密切的聯系,存在許多可以進行類比的內容。在前面已經學習過有關方程(組)內容的基礎上,學生已經對方程有一定的認識。本章教學應充分發揮學習心理學中正向遷移的積極作用,借助已有的對方程的認識,進一步學習不等式及不等式組。
教學目標:
1.了解一元一次不等式及其有關概念,經歷“把實際問題抽象為不等式”的過程,能夠“列出不等式或不等式組表示問題中的不等關系,體會不等式(組)是刻畫現實世界中不等關系的一種有效的數學模型。
2.通過觀察、對比、歸納,探索不等式的性質,能利用它們探究一元一次不等式的解法。
3.了解解一元一次不等式的基本目標(使不等式逐步轉化為x>a或x
4.了解不等式組及其相關概念,會解有兩個一元一次不等式組成的不等式組,并會有數軸確定解集。
5.通過課題學習,以體育比賽問題為載體探究實際問題中的不等關系,進一步體會利用不等式解決問題的基本過程,感受數學的應用價值,提高分析問題、解決問題的能力。
二、按課標和教材要求,本單元側重講練哪些基礎知識和基本技能
1、知識與技能:本章教學和學習中應注意打好基礎,注重對基礎知識和基本技能等進行及時的歸納整理,使學生對基礎知識留下深刻印象、對基本技能達到一定的掌握程度。
2、過程與方法:教學中注重對數學思想方法的滲透
(1)有實際問題抽象為不等式(組)這個過程中蘊含的符號化、模型化的思想;
(2)解不等式(組)的`過程蘊涵的化規思想。
3、情感、態度和價值觀:
(1)認識通過觀察、試驗、類比可以獲得數學結論,體驗教學活動充滿著探索性和創造性。
(2)通過探索增進學生之間的配合,使學生敢于面對數學活動中的困難,并有克服困難和運用知識解決問題的成功體驗,數理學好數學的自信心。
三、分析教材、教法及教學設想
在實際生活中,同類量之間具有一種不相等的關系。這種不相等的關系是大量存在的,是普遍的,本章將從了解表示不相等關系的不等式的意義開始,研究不等式的性質、一元一次不等式和它的解法、一元一次不等式組和它的解法及應用。
1、不等式及其解集(4課時)
(1)不等式、一元一次不等式的概念(可以借助天平演示導入)
①兩個體重相同的孩子正在蹺蹺板上做游戲。現在換了一個小胖子上去,蹺蹺板發生了傾斜,游戲無法繼續進行下去了,這是什么原因?
②一輛勻速行駛的汽車在11:20時距離A地50千米。要在12:00以前駛過A地,車速應該具備什么條件?若設車速為每小時x千米,能用一個式子表示嗎?
③世紀公園的票價是:每人5元,一次購票滿30張可少收1元,某班有27名少先隊員去世紀公園進行活動,當領隊王小華準備好了零錢到售票處買了27張票時,愛動腦的李敏同學喊住了王小華,提議買30張票,但有的同學不明白,明明只有27個人,買30張票,豈不浪費嗎?
針對李敏的提議對不對呢?是不是真的浪費呢?
合作交流,在學生充分發表自己的意見的基礎上,師生共同歸納出不等式、一元一次不等式的概念。這里可添加一組,找出哪些是一元一次不等式?的練習
補充:“≥”和“≤”表示不等式關系的式子也是不等式。
(2)不等式的解集
利用創設情景中的第②題提問:
問題1 要使汽車在12:00以前駛過A地,你認為車速應該為多少呢?
問題2 車速可以是每小時85千米嗎?每小時82千米呢?每小時75.1千米呢?每小時74千米呢?
由此導出不等式的解集,并且配合使用教材中128頁習題、134頁1、2達到應用遷移,鞏固提高的目的。
(3)不等式的性質
學生完成課本P129的觀察,引出不等式的基本性質,并強調不等式基本性質3,然后,讓學生自己舉例來驗證上述不等式的三條基本性質。配套習題:教材134頁4、5、7
在這里可設置問題:在不等式-2<6兩邊都乘以m后,結論將會怎樣?(當字母m的取值不明確時,需對m分情況討論。);比較等式性質與不等式的基本性質的異同。問這兩個問題的目的在于強化學生對不等式基本性質的理解,特別是對不等式基本性質3的理解。
(4)利用不等式的性質解不等式
解題時,要求學生要聯想到解一元一次方程的思想方法,并將原題與x>a或x<a對照著用哪條基本性質能達到題目要求,同時強調推理的根據,尤其要注意不等式基本性質3和基本性質2的區別,解題書寫要規范, 逐步培養學生邏輯思維的能力。
并向學生提出如下問題:
(1)解一元一次不等式的步驟是怎樣?它與解一元一次方程的步驟有何異同?
(2)解一元一次不等式時,需注意什么?
(3)解一元一次不等式的基本思想是什么?
繼而歸納 解一元一次方程,要根據等式的性質,將方程逐步化為x=a的形式;而解一元一次不等式,則要根據不等式的性質,將不等式逐步化為x>a(或x<a)的形式。
注意事項:
l去分母(不等式性質2或3)
注意:①勿漏乘不含分母的項;②分子是兩項或兩項以上的代數式時要加括號;③若兩邊同時乘以一個負數,需注意不等號的方向要改變。
l去括號(去括號法則和分配律)
注意:①勿漏乘括號內的每一項;②括號前面試“-”號,括號內各項要變號。
l移項(不等式性質1)
注意:移項要變號。
l合并(合并法則)
l系數化為1(不等式基本性質2或性質3)
注意:當同乘以一個負數時,不等號的方向要改變。
配套習題:教材130頁例1,133頁練習1、2
(4)在數軸上表示不等式的解集
當不等號為“>”“<”時用空心圓圈,當不等號為“≤”“≥”時用實心圓圈。
注意:不等號“>”“<”表示不等關系,它們具有方向性,因而不等號兩側不可互相交換,
例如-7<-5,不能寫成-5<-7。配套習題:教材134頁6
2、實際問題與一元一次不等式(3課時)
依據列方程解應用題的過程,對照不等式應用題的步驟,
第一步:審題,找不等關系;
第二步:設未知數,用未知數表示有關代數式;
第三步:列不等式;
第四步:解不等式;
第五步:根據實際情況寫出答案
本節課所學內容的基礎上,教師應提醒學生注意:
依照題設條件列不等式時,要注意認真審題,抓住關鍵詞語將題目所給數量關系轉化相應的不等式
弄清求某些一元一次不等式的解集合特殊解的區別與聯系
用不等式解應用問題時,必須注意對未知數的限制條件
中考中常見的關于方案設計類的應用題
可由師生共同歸納出以下三種采購方案:
什么情況下,到甲商場購買更優惠?
什么情況下,到乙商場購買更優惠?
什么情況下,兩個商場購買收費相同?
3、一元一次不等式組(2課時)
(1)一元一次不等式組概念、解法
通過拼圖驗證課本第143頁中的問題,給出不等式組、不等式組的解集的概念,并分析得出,解不等式組就是求它的解集也就是求不等式組中每一個不等式的解集的公共部分。配合使用教材144頁例1 147頁的練習練習、習題
通過練習總結如下問題:
a)你是如何確定方程組的解的?(方程組的解即是指同時滿足各個方程的解)
b)方程組的解與不等式組的解有什么異同?(無論是方程組還是不等式組,它們的解均是指同時滿足各個方程或不等式的解的公共部分,但方程組的解一般只有一組,而不等式組的解一般有很多范圍可選擇。)
c)不等式組的解的四種情形(a>b)。
若:①當 時,不等式組解集為x>a;②當 時,不等式組解集為b<x<a;
③當 時,不等式組解集為x<b; ④當 時,不等式組無解。
(2)在數軸上表示出一元一次不等式組的解集
(3)一元一次不等式組的應用
注意由不等式組的解確立實際問題的解
4.利用不等關系分析比賽(2課時)
本節課通過欣賞精彩的體育比賽片斷探究體育比賽中的不等關系問題,是對不等式應用的一個重要的深化過程。
對比賽分析的過程,可以讓學生分組討論,各抒己見,教師參與個組討論,及時給與指導。
本次活動教師應重點關注:
(!)學生是否理解題意,并準確挖掘出問題的隱含條件,從而運用不等式描述出問題中的不等關系,得出正確結論;
(2)學生是否積極參加小組討論,并通過交流及時解決探究中遇到的困難;
(3)學生是否善于發表自己的見解,敘述是否有條理、語言是否準確。
【數學不等式課件】相關文章:
不等式說課課件06-11
七年級數學不等式課件04-13
高三基本不等式課件04-01
高中不等式知識點課件03-29
基本不等式說課課件06-10
不等式的基本性質的教學課件06-12
人教版七年級數學下冊不等式的性質課件04-13
基本不等式教學課件(通用9篇)06-02
高一絕對值不等式課件02-20