高考向量與三角函數的試題解析

時間:2021-06-10 14:52:22 試題 我要投稿

高考向量與三角函數的試題解析

  【命題趨向】

高考向量與三角函數的試題解析

  1。三角函數的性質、圖像及其變換,主要是 的性質、圖像及變換。考查三角函數的概念、奇偶性、周期性、單調性、有界性、圖像的平移和對稱等。以選擇題或填空題或解答題形式出現,屬中低檔題,這些試題對三角函數單一的性質考查較少,一道題所涉及的三角函數性質在兩個或兩個以上,考查的知識點來源于教材。

  2。三角變換。主要考查公式的靈活運用、變換能力,一般要運用和角、差角與二倍角公式,尤其是對公式的應用與三角函數性質的綜合考查。以選擇題或填空題或解答題形式出現,屬中檔題。

  3。三角函數的應用。以平面向量、解析幾何等為載體,或者用解三角形來考查學生對三角恒等變形及三角函數性質的應用的綜合能力。特別要注意三角函數在實際問題中的應用和跨知識點的應用,注意三角函數在解答有關函數、向量、平面幾何、立體幾何、解析幾何等問題時的'工具性作用。這類題一般以解答題的形式出現,屬中檔題。

  4。在一套高考試題中,三角函數一般分別有1個選擇題、1個填空題和1個解答題,或選擇題與填空題1個,解答題1個,分值在17分—22分之間。

  5。在高考試題中,三角題多以低檔或中檔題目為主,一般不會出現較難題,更不會出現難題,因而三角題是高考中的得分點。

  【考點透視】

  1。理解任意角的概念、弧度的意義,能正確地進行弧度與角度的換算。

  2。掌握任意角的正弦、余弦、正切的定義,了解余切、正割、余割的定義,掌握同解三角函數的基本關系式,掌握正弦、余弦的誘導公式,理解周期函數與最小正周期的意義。

  3。掌握兩角和與兩角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式。

  4。能正確運用三角公式,進行簡單三角函數式的化簡、求值和恒等式證明。

  5。了解正弦函數、余弦函數、正切函數的圖象和性質,會用"五點法"畫正弦函數、余弦函數和函數y=asin(ωx ψ)的簡圖,理解a、ω、ψ的物理意義。

  6。會由已知三角函數值求角,并會用符號arcsin x, arcos x,arctan x表示。

  7。掌握正弦定理、余弦定理,并能初步運用它們解斜三角形,能利用計算器解決解三角形的計算問題。

  8。掌握向量與三角函數綜合題的解法。

  常用解題思想方法

  1。三角函數恒等變形的基本策略。

  (1)常值代換:特別是用"1"的代換,如1=cos2θ sin2θ=tanx·cotx=tan45°等。

  (2)項的分拆與角的配湊。如分拆項:sin2x 2cos2x=(sin2x cos2x) cos2x=1 cos2x;配湊角:α=(α β)—β,β= — 等。

  (3)降次與升次。即倍角公式降次與半角公式升次。

  (4)化弦(切)法。將三角函數利用同角三角函數基本關系化成弦(切)。

  (5)引入輔助角。asinθ bcosθ= sin(θ ),這里輔助角 所在象限由a、b的符號確定, 角的值由tan = 確定。

  (6)萬能代換法。巧用萬能公式可將三角函數化成tan 的有理式。

  2。證明三角等式的思路和方法。

  (1)思路:利用三角公式進行化名,化角,改變運算結構,使等式兩邊化為同一形式。

  (2)證明方法:綜合法、分析法、比較法、代換法、相消法、數學歸納法。

  3。證明三角不等式的方法:比較法、配方法、反證法、分析法,利用函數的單調性,利用正、余弦函數的有界性,利用單位圓三角函數線及判別法等。

【高考向量與三角函數的試題解析】相關文章:

高考解析幾何試題賞析06-11

高考文綜試題及答案解析03-19

2017高考語文試題答案解析04-02

高考語文試題答案和解析03-07

高考古詩詞鑒賞試題及解析11-20

高考理綜預測試題及答案解析03-30

高考詩歌內容鑒賞試題解析技巧談12-07

物理部分背景高考試題整體解析03-23

高考古詩詞鑒賞試題全解析11-18

久久综合国产中文字幕,久久免费视频国产版原创视频,欧美日韩亚洲国内综合网香蕉,久久久久久久久久国产精品免费
伊人婷婷色香五月综合缴缴情 | 亚洲欧美性综合在线 | 亚洲国产AV韩国AV | 亚洲日本熟女视频 | 日韩免费码中文在线观看 | 自拍偷自拍亚洲一区 |