函數的最值說課稿

時間:2021-02-19 10:01:47 說課稿 我要投稿

函數的最值說課稿

  一、說教材

函數的最值說課稿

  (一)地位與重要性

  函數的最值是《高中數學》一年級第一學期的內容,是函數基本性質的重要部分。在實際問題的解決過程中,建立了變量間的函數關系后,求最值培養了學生運用基礎理論研究具體問題的能力,這也是學習數學的目的之一。函數最值的教學在培養學生數形結合、化歸的數學思想同時也可以使學生養成嚴謹思維的學習習慣。函數的思想是一種重要的數學思想,它體現了運動變化和對立統一的觀點,本節課對初高中知識的銜接起到了承上啟下的作用。函數的最值問題與不等式、方程、參數范圍的探求及解析幾何等知識綜合在一起往往能編擬綜合性較強的新型題目,可以綜合考查學生應用函數知識分析解決問題的能力,從而成為高考的高檔解答題,是高考測試的熱點之一。

  (二)教學目標

  知識與能力目標:掌握求二次函數最值的常用方法——配方法,培養學生數形結合、化歸的數學思想和運用基礎理論研究解決具體問題的能力。

  情感目標:經歷和體驗數學活動的過程以及數學在現實生活中的作用,激發學生學習數學知識的積極性,樹立學好數學的信心。

  過程目標:通過課堂學習活動培養學生相互間的合作交流,且在相互交流的過程中養成學生表述、抽象、總結的思維習慣,進而獲得成功的體驗。

  科研目標:在教師指導下學生經歷和體驗探究過程的方法。

  (三)教學重難點

  重點:配方法、數形結合求二次函數的最值。

  難點:二次函數在閉區間上的最值。

  二、說教法與學法

  在初中學生已經學習過二次函數的知識,根據本節課的內容和學生的實際水平,本節課主要采用探究式教學法和講練結合法進行教學。教學過程也是一個學生主動建構的過程,教師不能無視學生已有的經驗,企圖從外部將新知識強行裝入學生的頭腦,而是要把學生現有的知識經驗作為新知識的生長點,引導學生從原有的知識經驗中“生長”及發現新的知識經驗。在本堂課學習中,學生發揮主體作用,主動地思考探究求解最值的最優策略,并歸納出自己的解題方法,將知識主動納入已建構好的知識體系,真正做到“學會學習”。

  三、說教學過程

  (一)課題引入

  環 節

  教 學 過 程

  設 計 說 明

  課 題 講 解

  例:動物園要建造一面靠墻的2間面積相同的長方形熊貓居室,如果可供建造圍墻的材料長是30米,那么寬為多少米時才能使所建造的熊貓居室面積最大?熊貓居室的最大面積是多少平方米?

  學生通過此例感受到在實際問題中需要解決函數的最值問題,從而引發學習本節內容的興趣。

  教學手段:用PPT展示題目

  教師引導學生討論解答,并個別答疑、點撥,收集學生的解法,挑出若干答案在實物投影儀上進行展示,并進行點評。

  學生的解法主要為函數最值法和利用基本不等式求最值,由學生評價兩種方法,為閉區間上二次函數的最值教學打下伏筆

  教學手段:實物投影儀

  (二)新知教學

  環 節

  教 學 過 程

  設 計 說 明

  課 題 講 解

  一、函數最大值和最小值的`概念

  通過引例最值的求解,引導學生闡述函數最大值和最小值的概念。

  學生口述師板書。

  一般地,設函數在處的函數值是.如果對于定義域內任意,不等式都成立,那么叫做函數的最小值,記作;如果對于定義域內任意,不等式都成立,那么叫做函數的最大值記作。

  二、例題講練

  例1、 求二次函數的最大值或者最小值:

  師生共同完成一例,高一學生要養成規范的書寫格式和習慣,其余題目請學生板演。

  (1) (2)

  (3)

  (4)

  學生根據已有的能力和經驗,動手得出答案,教師點評。提醒注意當取何值時,函數取到最值。

  培養學生闡述、分析、理解概念的能力,引入最大值概念的過程是遵循由已知去認識未知的認識規律進行設計的,現代教育心理學的研究認為,有效的概念教學是建立在學生已有知識結構的基礎上的,因此教師在設計教學的過程中必須注意在學生已有知識結構中尋找新概念的固著點,引導學生通過同化或順應,掌握新概念,進而完善知識結構

  讓學生從求實際問題的最大值入手,由熟悉的二次函數圖象的頂點所具有的特點出發,得到求二次函數最大值(最小值)的方法。

  突出學生的主體地位,發揮教師的主導作用,培養思維的嚴謹性以及轉化能力,通過區間的變化讓學生充分感受到二次函數的最值的求解要討論對稱軸與所給區間的關系。

  教學方式:講練結合

  例2、在 的條件下,求函數的最大值和最小值。

  教師引導學生逐步深入思考:

  1、定義域與函數最值是什么關系?

  2、轉化后要研究的函數是什么?

  目標函數為

  進一步推出目標函數數形結合同時注意嚴謹的思維方式,進一步認識到定義域與值域、最值的互動關系。

  教學方式:學生自主探究

  (三)歸納小結

  環 節

  教學過程

  設 計 說 明

  小 結

  1、函數最大值和最小值的概念

  2、函數的定義域、值域與函數的最值的關系

  3、配方法較適宜于求二次函數最大值(最小值),尤其要注意閉區間上函數的最值可數形結合解決。

  4、數學思想:數形結合思想、轉化思想

  通過方法、思想的小結學生分析、解決問題的能力有所提高,有助于后續問題學習和研究。

  教學方式:學生交流總結

  (四)課堂練習

  環 節

  教學過程

  設 計 說 明

  課 堂 練 習

  求下列函數的最值

  (1)

  (2)

  (3)

  (4)

  題目設計目標:

  1、檢查本節基本內容的學習掌握情況

  2、考查二次函數概念及學生的轉化能力

  教學方式:請學生板演

  (五)作業布置

  環 節

  教學過程

  設 計 說 明

  作業布置

  1、求函數的最值.

  2、已知,求函數的最值.

  3、求 的最大值和最小值.

  4、求函數的最大值和最小值.

  5、某旅店有客床100張,各床每天收費10元時可全部客滿,若每床每天收費每提高2元,便減少10張客床租出。這樣,為了減少投入多獲利,每床每天收費應提高多少元?

  作業既可以反映學生對本節知識的理解和掌握,也是對知識的一個鞏固的過程,因此作業的設計是提高課堂教學質量的關鍵之一,內容不僅要貼近課本又要綜合所學習過的知識,是能力的進一步提高。

【函數的最值說課稿】相關文章:

函數的最值教案設計01-16

求函數最值的方法總結03-31

函數的最大值和最小值說課稿04-01

高一新教材數學函數最值說課稿04-07

《函數的最大值和最小值》說課稿范文04-07

《函數最大值和最小值》說課稿范文11-03

函數的最大值和最小值說課稿范文11-12

二次函數線段最值教學設計04-16

絕對值函數是初等函數嗎?09-23

久久综合国产中文字幕,久久免费视频国产版原创视频,欧美日韩亚洲国内综合网香蕉,久久久久久久久久国产精品免费
午夜免费视频.在线观看 | 亚洲制服丝精品在线精品 | 日本乱码伦视频免费播放 | 日本免费一区二区三区中文字幕 | 亚洲乱码尤物193yw | 亚洲一区二区三区体验区 |