可以轉化為一元一次方程的分式方程說課稿范文
一、教材分析:
1、本章與本節的地位與作用: 本章是在學生已掌握了整式的四則運算,多項式的因式分解的基礎上,通過對比分數的知識來學習的,包括分式的概念、分式的基本性質、分式的四則運算,這一章的內容對于今后進一步學習函數和方程等知識有著重要的作用。可化為一元一次方程的分式方程是在學生已熟練地掌握了一元一次方程的解法、分式四則運算等有關知識的基礎進行學習的。它既可看著是分式有關知識在解方程中的應用;也可看著是進一步學習研究其它分式方程的基礎(可化為一元二次方程的分式方程)。同時學習了分式方程后也為解決實際問題拓寬了路子,打破了列方程解應用題時代數式必須是整式這一限制。 解分式方程的基本思想是:“把分式方程轉化為整式方程”,基本方法是:“去分母”。讓學生進一步體會“轉化”這一數學思想,對提高學生的數學素質是非常重要的。 2、教學目標:根據學生已有的知識基礎及本節在教材中的地位與作用,依據大綱的要求確定本課時的教學目標為:
(1)了解分式方程的概念,會識別分式方程與整式方程。
(2)理解分式方程的解法,會熟練地解分式方程。
(3)體會解分式方程的“轉化”思想。
3、教學重點、難點、關鍵:根據大綱要求及學生的認知水平,確定本節課的教學重點為:分式方程的解法。重中之重是去分母實現分式方程到整式方程的轉化與驗根。 由于學生去分母時涉及等式的基本性質、整式運算、分式運算等知識,學生容易出錯,而一旦順利地實現了去分母,即實現了分式方程到整式方程的轉化,解整式方程是學生早已熟悉的知識。因此確定正確去分母既是教學的難點,也是教學的關鍵。由于解分式方程可能產生增根,學生第一次遇到,所以分式方程的驗根也是難點,
二、教學方法:
(一)學生分析: 根據七年級學生的知識水平和年齡特征,考慮到素質教育的要求,結合本節課的特點,主要采用啟導式教學法、講練法,引導學生去觀察、去思考、去探索,盡量讓學生自己尋找、歸納出解分式方程的一般步驟。
(二)新課教學:
1、分式方程的`定義。
(1)分母里含有未知數的方程叫做分式方程。
(2)提問:前面學習過的一元一次方程的分母里含有未知數嗎?前面學習過的方程都是整式方程,一元一次方程是最簡單的整式方程。
(3)下列方程中哪些是整式方程?哪些是分式方程? (共6個識別題,1.x+3y=1/12 2、x+1/x=5 ,3、2/3x,4、3/(x-2)-1=5/(2x+1) 5、5/(3x-2)+(x+1)/3=16、(2-7)/5+x/3=1/2
) 注意:區分整式方程與分式方程的關鍵是什么?分母中是否含有字母)。先學習分式方程的定義,再與已有知識進行對比,進一步強化學生對分式方程概念的本質的認識,緊接著利用幾道識別題訓練學生正確地區分分式方程與整式方程及分式的區別,這部分教學要求達到“了解”層次即可。)
2、解方程:回憶解方程的一般步驟中的第一步?如何去掉分母?方程的兩邊都乘以一個什么樣的式子?這是解分式方程的關鍵步驟,只有通過去分母才能實現我們的轉化,而這個步驟由于涉及的知識多,學生容易出錯。這里應是教學的重點之一。解這個整式方程。(由學生完成)。(學生已有這部分知識,由學生獨立完成,新課的教學不能教師一講到底,凡學生能做的應由學生做,因為學生才是學習的主體。) 把解得的未知數的值代入原方程進行檢驗。必須強調原方程,因為有學生往往代入去了分母的整式方程中。應引導學生進行檢驗,得出未知數的值是否使方程兩邊相等,確定方程的解的正確性,得出原分式方程的解的結論。
(三)課堂練習:
通過練習強化學生對解分式方程的步驟的理解,使學生熟練地解分式方程,通過練習,及時掌握學生對所學知識的掌握情況,根據練習中反饋的信息進行教學的查缺補漏,糾正練習中出現的問題,在練習中形成解題的能力。
拓展題:
小明說:x=2是方程2/(x-2)-1=5/(2x+1)的增根?你是否贊成他的說法?
對這堂課的增根的進一步理解與鞏固,說明增根是在解方程后,讓公分母為零的未知數的值才叫方程的增根。
(四)課堂小結:
1、分式方程的定義。
2、解分式方程的一般步驟。
3、解分式方程應注意:(1)正確去分母,化分式方程為整式方程。(2)解分式方程必須檢驗。通過小結使學生學習的知識形成體系、網絡。幫助學生全面地理解掌握所學知識。小結也應由學生試著完成,教師補充,有利于培養學生歸納整理知識的能力,也是學生參與學習的體現。
(五)、作業布置:練習冊第52頁10.5 1、2、3題。
課外作業的布置是必須的,它有利于學生鞏固所學的知識,作業應精選,應適量。
1、觀察以下兩個題目:
(1)計算: 2/(x-1)-1
(2)解方程:2/(x-1)-1=0
這兩個題目分別要求我們做什么?解題的第一步有什么不同?
五、幾點說明: 1、板書設計:將黑板分成四個部分。 (1)課題、引例1、引例2。 (2)例1。 (3)例2。(學生板書的課堂練習寫在例1、例2的下面) (4)小結與作業布置。 2、教學時間安排: 復習引入約3分鐘;新課教學約30分鐘;課堂練習約5分鐘;小結約2分鐘;作業布置約1分鐘。 3、整堂課要體現的設計思想: 根據學生已有的知識結構和年齡特征,結合教材的特點,選擇啟導式教學法、講練法,培養學生的學習興趣,讓每個學生都達到大綱的要求。注重“學生是學習的主體”這一教學思想的體現,教學中通過富有啟發性的提問讓學生思考、讓學生試著總結、讓學生試著做一做等方式盡量讓學生去參與,去發現,去嘗試,去總結。使學生由被動地接受知識變為主動地去獲得知識。
在討論增根問題時,通過具體例子展現了解分式方程時可能出現增根的現象,并結合例子分析了什么情況下產生增根,然后歸納出驗根的方法。
【可以轉化為一元一次方程的分式方程說課稿】相關文章:
可以轉化為一元一次方程的分式方程說課稿11-04
分式方程的說課稿03-09
分式方程說課稿01-05
分式方程說課稿11-02
分式方程的說課稿10-03
分式方程的說課稿01-31
《分式方程的應用》說課稿06-24
分式方程的應用說課稿11-02
分式方程說課稿三篇05-29