高二數學教案

時間:2024-08-29 12:31:14 數學教案 我要投稿

高二數學教案

  作為一名教師,往往需要進行教案編寫工作,借助教案可以提高教學質量,收到預期的教學效果。教案應該怎么寫呢?以下是小編幫大家整理的高二數學教案,歡迎大家分享。

高二數學教案

高二數學教案1

  教學目標

  (1)掌握“兩個正數的算術平均數不小于它們的幾何平均數”這一重要定理;

 。2)能運用定理證明不等式及求一些函數的最值;

  (3)能夠解決一些簡單的實際問題;

 。4)通過對不等式的結構的分析及特征的把握掌握重要不等式的聯系;

 。5)通過對重要不等式的證明和等號成立的條件的分析,培養學生嚴謹科學的認識習慣,進一步滲透變量和常量的哲學觀;

  教學建議

  1.教材分析

  (1)知識結構

  本節根據不等式的性質推導出一個重要的不等式:,根據這個結論,又得到了一個定理:,并指出了為的算術平均數,為的幾何平均數后,隨后給出了這個定理的幾何解釋。

 。2)重點、難點分析

  本節課的重點內容是掌握“兩個正數的算術平均數不小于它們的幾何平均數”;掌握兩個正數的和為定值時積有最大值,積為定值時和有最小值的結論,教學難點是正確理解和使用平均值定理求某些函數的.最值.為突破重難點,教師單方面強調是遠遠不夠的,只有讓學生通過自己的思考、嘗試,注意到平均值定理中等號成立的條件,發現使用定理求最值的三個條件“一正,二定,三相等”缺一不可,才能大大加深學生對正確使用定理的理解,教學中要注意培養學生分析歸納問題的能力,幫助學生形成知識體系,全面深刻地掌握平均值定理求最值和解決實際問題的方法.

 、宥ɡ斫虒W的注意事項

  在公式以及算術平均數與幾何平均數的定理的教學中,要讓學生注意以下兩點:

 。1)和成立的條件是不同的:前者只要求都是實數,而后者要求都是正數。

  例如成立,而不成立。

 。2)這兩個公式都是帶有等號的不等式,因此對其中的“當且僅當……時取‘=’號”這句話的含義要搞清楚。教學時,要提醒學生從以下兩個方面來理解這句話的含義:

  當時取等號,其含義就是:

  僅當時取等號,其含義就是:

  綜合起來,其含義就是:是的充要條件。

 。ǘ╆P于用定理證明不等式

  當用公式,證明不等式時,應該使學生認識到:

  它們本身也是根據不等式的意義、性質或用比較法(將在下一小節學習)證出的。因此,凡是用它們可以獲證的不等式,一般也可以直接根據不等式的意義、性質或用比較法證明。

 。ㄈ⿷枚ɡ砬笞钪档臈l件

  應用定理時注意以下幾個條件:

 。1)兩個變量必須是正變量;

 。2)當它們的和為定值時,其積取得最大值;當它們的積是定值時,其和取得最小值;

 。3)當且僅當兩個數相等時取最值.

  即必須同時滿足“正數”、“定值”、“相等”三個條件,才能求得最值.

  在求某些函數的最值時,還要注意進行恰當的恒等變形、分析變量、配置系數.

 。ㄋ模⿷枚ɡ斫鉀Q實際問題的分析

  在應用兩個正數的算術平均數與幾何平均數的定理解決這類實際問題時,要讓學生注意;

 。1)先理解題意,設變量,設變量時一般把要求最大值或最小值的變量定為函數;

 。2)建立相應的函數關系式,把實際問題抽象為函數的最大值或最小值問題;

 。3)在定義域內,求出函數的最大值或最小值;

  (4)正確寫出答案。

  2.教法建議

 。1)導入新課建議采用學生比較熟悉的問題為背景,這樣容易被學生接受,產生興趣,激發學習動機.使得學生學習本節課知識自然且合理.

 。2)在新授知識過程中,教師應力求引導、啟發,讓學生逐步回憶所學的知識,并應用它們來分析問題、解決問題,以形成比較系統和完整的知識結構.對有關概念使學生理解準確,盡量以多種形式反映知識結構,使學生在比較中得到深刻理解.

  (3)教學方法建議采用啟發引導,講練結合的授課方式,發揮教師主導作用,體現學生主體地位,學生獲取知識必須通過學生自己一系列思維活動完成,啟發誘導學生深入思考問題,有利于培養學生思維靈活、嚴謹、深刻等良好思維品質.

 。4)可以設計解法的正誤討論,這樣能夠使學生嘗試失敗,并從失敗中找到錯誤原因,加深對正確解法的理解,真正把新知識納入到原有認知結構中.

 。5)注意培養應用意識.教學中應不失時機地使學生認識到數學源于客觀世界并反作用干客觀世界.為增強學生的應用意識,在平時教學中就應適當增加解答應用問題的教學,使學生不禁感到“數學有用,要用數學”.

  第一課時

  教學目標:

  1.學會推導并掌握兩個正數的算術平均數與幾何平均數定理;

  2.理解定理的幾何意義;

  3.能夠簡單應用定理證明不等式.

  教學重點:均值定理證明

  教學難點:等號成立條件

  教學方法:引導式

  教學過程

  一、復習回顧

  上一節,我們完成了對不等式性質的學習,首先我們來作一下回顧.

  (學生回答)

  由上述性質,我們可以推導出下列重要的不等式.

  二、講授新課

  1.重要不等式:

  如果

  證明:

  當

  所以,

  即

  由上面的結論,我們又可得到

  2.定理:如果是正數,那么

  證明:∵

  即

  顯然,當且僅當

  說明:)我們稱的算術平均數,稱的幾何平均數,因而,此定理又可敘述為:兩個正數的算術平均數不小于它們的幾何平均數.

 。┏闪⒌臈l件是不同的:前者只要求都是實數,而后者要求都是正數.

 。爱斍覂H當”的含義是充要條件.

  3.均值定理的幾何意義是“半徑不小于半弦”.

  以長為的線段為直徑作圓,在直徑 AB 上取點 C . 過點 C 作垂直于直徑 AB 的弦DD′,那么

  即

  這個圓的半徑為,顯然,它不小于 CD ,即,其中當且僅當點 C 與圓心重合;即時,等號成立.

  在定理證明之后,我們來看一下它的具體應用.

  4.例題講解:

  例1已知都是正數,求證:

  (1)如果積是定值 P, 那么當時,和有最小值

 。2)如果和是定值 S ,那么當時,積有最大值證明:因為都是正數,所以

 。1)積 xy 為定值 P 時,有

  上式當時,取“=”號,因此,當時,和有最小值.

 。2)和為定值 S 時,有

  上式當時取“=”號,因此,當時,積有最大值.

  說明:此例題反映的是利用均值定理求最值的方法,但應注意三個條件:

  (1)函數式中各項必須都是正數;

  (2)函數式中含變數的各項的和或積必須是常數;

  (3)等號成立條件必須存在.

  接下來,我們通過練習來進一步熟悉均值定理的應用.

  三、課堂練習

  課本P 11練習2,3

  要求:學生板演,老師講評.

  課堂小結:

  通過本節學習,要求大家掌握兩個正數的算術平均數不小于它們的幾何平均數的定理,并會應用它證明一些不等式,但是在應用時,應注意定理的適用條件.

  課后作業:習題6.2 1,2,3,4

  板書設計:

  §6.2.1 ……

  1.重要不等式說明)4.例題……學生

  ……)……練習

  )……

  2.均值定理3.幾何意義

  ……

  ……

  第二課時

  教學目標:

  1.進一步掌握均值不等式定理;

  2.會應用此定理求某些函數的最值;

  3.能夠解決一些簡單的實際問題.

  教學重點:均值不等式定理的應用

  教學難點:

  解題中的轉化技巧

  教學方法:啟發式

  教學過程

  一、復習回顧

  上一節,我們一起學習了兩個正數的算術平均數與幾何平均數的定理,首先我們來回顧一下定理內容及其適用條件.

 。▽W生回答)

  利用這一定理,可以證明一些不等式,也可求解某些函數的最值,這一節,我們來繼續這方面的訓練.

  二、講授新課

  例2已知都是正數,求證:

  分析:此題要求學生注意與均值不等式定理的“形”上發生聯系,從而正確運用,同時加強對均值不等式定理的條件的認識.

  證明:由都是正數,得

  即

  例3某工廠要建造一個長方體無蓋貯水池,其容積為,深為3m,如果池底每的造價為150元,池壁每的造價為120元,問怎樣設計水池能使總造價最低,最低總造價是多少元?

  分析:此題首先需要由實際問題向數學問題轉化,即建立函數關系式,然后求函數的最值,其中用到了均值不等式定理.

  解:設水池底面一邊的長度為 x m,水池的總造價為 l 元,根據題意,得

  當

  因此,當水池的底面是邊長為40m的正方形時,水池的總造價最低,最低總造價是297600元.

  評述:此題既是不等式性質在實際中的應用,應注意數學語言的應用即函數解析式的建立,又是不等式性質在求最值中的應用,應注意不等式性質的適用條件.

  為了進一步熟悉均值不等式定理在證明不等式與求函數最值中的應用,我們來進行課堂練習.

  三、課堂練習

  課本P 11練習1,4

  要求:學生板演,老師講評.

  課堂小結:

  通過本節學習,要求大家進一步掌握利用均值不等式定理證明不等式及求函數的最值,并認識到它在實際問題中的應用.

  課后作業:

  習題6.2 5,6,7

  板書設計:

  均值不等式例2 §6.2.2例3學生

  定理回顧…… ……

  …… …… ……練習

  …… …… ……

高二數學教案2

  一、教學目的

  使學生掌握等腰三角形性質定理(包括推論)及其證明.

  二、教學重點、難點

  重點:等腰三角形的性質.

  難點:文字命題的證明.

  三、教學過程

  復習提問

  什么叫做等腰三角形?什么是等腰三角形的腰、底邊、頂點和底角?

  引入新課

  教師演示事先備好的等腰三角形紙片對折,使兩腰疊在一起,發現它的兩底角重合,從而得到等腰三角形兩底角相等的命題,當然此命題的真實性還需推理論證.

  新課

  1.等腰三角形的性質定理等腰三角形的兩底角相等(簡寫成“等邊對等角”).

  讓學生回憶前面學過的文字命題證明的全過程.引導學生寫出已知、求證,并且都要結合圖形使之具體化.

  2.推論1等腰三角形頂角平分線平分底邊且垂直于底邊.

  從性質定理的證明過程可以知道(如圖1)BD=DC,∠ADB=∠ADC,所以AD平分BC,且AD⊥BC,即得推論.

  從推論1可以知道,等腰三角形的頂角平分線、底邊上的中線、底邊上的.高互相重合.

  推論2等邊三角形的各角都相等,并且每一個角都等于60°.

  3.等腰三角形性質的應用.等腰三角形的性質有著重要的應用,一般說,利用“等腰三角形兩底角相等”的性質證明兩角相等;利用“等腰三角形底邊上的三條主要線段重合”的性質,來證明兩條線段相等、兩個角相等及兩條直線互相垂直;利用“等邊三角形各角相等,并且每一個角都等于60°”的性質,來證明一個角是60°,或作圖中通過作等邊三角形,作出一個60°的角.

  例1已知:如圖2,房屋的頂角∠BAC=100°,過屋頂A的立柱AD⊥BC、屋椽AB=AC.求頂架上∠B、∠C、∠BAD、∠CAD的度數.

  這是一道幾何計算題,要使學生熟悉解計算題的步驟,引導學生寫出解題過程.

  小結

  1.敘述等腰三角形的性質(本堂所講定理及推論)及其應用.

  2.等腰三角形頂角與底角之間的常用關系式:在△ABC中,AB=AC,則

  (1)∠A=180°-2∠B=180°-2∠C;

  3.已知等腰三角形一個角的度數,求其它兩個角的度數:(1)若已知角是鈍角或直角,則此角一定為頂角,于是由2中(2)可求出兩底角;(2)若已知角是銳角,則此角可能是頂角,也可能是底角.若為前者,可按2中(2)求出兩底角.若為后者,則可按2中(1)求出頂角.

  練習:略

  作業:略

  四、教學注意問題

  1.等腰三角形的性質在今后解(證)幾何題中有著重要的應用,務必引起學生重視.且應反復練習.

  2.幾何計算題的一般解題步驟.

高二數學教案3

  一、教學內容分析

  圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象、恰當地利用xx解題,許多時候能以簡馭繁。因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。

  二、學生學習情況分析

  我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。

  三、設計思想

  由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情、在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率、

  四、教學目標

  1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應用xx解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。

  2、通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

  3、借助多媒體輔助教學,激發學習數學的興趣、

  五、教學重點與難點:

  教學重點

  1、對圓錐曲線定義的理解

  2、利用圓錐曲線的定義求“最值”

  3、“定義法”求軌跡方程

  教學難點:

  巧用圓錐曲線xx解題

  六、教學過程設計

  【設計思路】

  開門見山,提出問題

  例題:

  (1)已知a(-2,0),b(2,0)動點m滿足|ma|+|mb|=2,則點m的軌跡是()。

  (a)橢圓(b)雙曲線(c)線段(d)不存在

  (2)已知動點m(x,y)滿足(x1)2(y2)2|3x4y|,則點m的軌跡是()。

  (a)橢圓(b)雙曲線(c)拋物線(d)兩條相交直線

  【設計意圖】

  定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節課首先要弄清楚的問題。

  為了加深學生對圓錐曲線定義理解,我以圓錐曲線的`定義的運用為主線,精心準備了兩道練習題。

  【學情預設】

  估計多數學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折——如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2這樣,很快就能得出正確結果。如若不然,我將啟發他們從等式兩端的式子|3x4y|入手,考慮通過適當的變形,轉化為學生們熟知的兩個距離公式。

  在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是,實軸長為,焦距為。以深化對概念的理解。

高二數學教案4

  教學準備

  教學目標

  熟練掌握三角函數式的求值

  教學重難點

  熟練掌握三角函數式的求值

  教學過程

  【知識點精講】

  三角函數式的求值的關鍵是熟練掌握公式及應用,掌握公式的逆用和變形

  三角函數式的求值的類型一般可分為:

  (1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的特點,找出和特殊角之間的關系,利用公式轉化或消除非特殊角

  (2)“給值求值”:給出一些角得三角函數式的值,求另外一些角得三角函數式的值。找出已知角與所求角之間的某種關系求解

  (3)“給值求角”:轉化為給值求值,由所得函數值結合角的范圍求出角。

  (4)“給式求值”:給出一些較復雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之

  三角函數式常用化簡方法:切割化弦、高次化低次

  注意點:靈活角的變形和公式的變形

  重視角的范圍對三角函數值的影響,對角的范圍要討論

  【例題選講】

  課堂小結】

  三角函數式的求值的關鍵是熟練掌握公式及應用,掌握公式的逆用和變形

  三角函數式的求值的類型一般可分為:

  (1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的'特點,找出和特殊角之間的關系,利用公式轉化或消除非特殊角

  (2)“給值求值”:給出一些角得三角函數式的值,求另外一些角得三角函數式的值。找出已知角與所求角之間的某種關系求解

  (3)“給值求角”:轉化為給值求值,由所得函數值結合角的范圍求出角。

  (4)“給式求值”:給出一些較復雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之

  三角函數式常用化簡方法:切割化弦、高次化低次

  注意點:靈活角的變形和公式的變形

  重視角的范圍對三角函數值的影響,對角的范圍要討論

高二數學教案5

  教學準備

  教學目標

  1、知識與技能:

 。1)推廣角的概念、引入大于角和負角;

 。2)理解并掌握正角、負角、零角的定義;

 。3)理解任意角以及象限角的概念;

  (4)掌握所有與角終邊相同的角(包括角)的表示方法;

  (5)樹立運動變化觀點,深刻理解推廣后的角的概念;

 。6)揭示知識背景,引發學生學習興趣;

 。7)創設問題情景,激發學生分析、探求的學習態度,強化學生的參與意識。

  2、過程與方法:

  通過創設情境:“轉體,逆(順)時針旋轉”,角有大于角、零角和旋轉方向不同所形成的角等,引入正角、負角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個終邊相同的角,畫出終邊所在的位置,找出它們的關系,探索具有相同終邊的角的表示;講解例題,總結方法,鞏固練習。

  3、情態與價值:

  通過本節的學習,使同學們對角的概念有了一個新的認識,即有正角、負角和零角之分。角的概念推廣以后,知道角之間的關系。理解掌握終邊相同角的表示方法,學會運用運動變化的觀點認識事物。

  教學重難點

  重點:理解正角、負角和零角的定義,掌握終邊相同角的表示法。

  難點:終邊相同的角的表示。

  教學工具

  投影儀等。

  教學過程

  【創設情境】

  思考:你的手表慢了5分鐘,你是怎樣將它校準的?假如你的手表快了1。25小時,你應當如何將它校準?當時間校準以后,分針轉了多少度?

  我們發現,校正過程中分針需要正向或反向旋轉,有時轉不到一周,有時轉一周以上,這就是說角已不僅僅局限于之間,這正是我們這節課要研究的主要內容——任意角。

  【探究新知】

  1、初中時,我們已學習了角的概念,它是如何定義的呢?

  [展示投影]角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所成的圖形。如圖1.1—1,一條射線由原來的位置,繞著它的端點o按逆時針方向旋轉到終止位置OB,就形成角a。旋轉開始時的.射線叫做角的始邊,OB叫終邊,射線的端點o叫做叫a的頂點。

  2、如上述情境中所說的校準時鐘問題以及在體操比賽中我們經常聽到這樣的術語:“轉體”(即轉體2周),“轉體”(即轉體3周)等,都是遇到大于的角以及按不同方向旋轉而成的角。同學們思考一下:能否再舉出幾個現實生活中“大于的角或按不同方向旋轉而成的角”的例子,這些說明了什么問題?又該如何區分和表示這些角呢?

  [展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉時成不同的角,這些都說明了我們研究推廣角概念的必要性。為了區別起見,我們規定:按逆時針方向旋轉所形成的角叫正角(positiveangle),按順時針方向旋轉所形成的角叫負角(negativeangle)。如果一條射線沒有做任何旋轉,我們稱它形成了一個零角(zeroangle)。

  3、學習小結:

 。1)你知道角是如何推廣的嗎?

 。2)象限角是如何定義的呢?

 。3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直線上的角的集合。

  課后習題

  作業:

  1、習題1.1A組第1,2,3題。

  2。多舉出一些日常生活中的“大于的角和負角”的例子,熟練掌握他們的表示,

  進一步理解具有相同終邊的角的特點。

高二數學教案6

  教學目標

  (1)掌握圓的標準方程,能根據圓心坐標和半徑熟練地寫出圓的標準方程,也能根據圓的標準方程熟練地寫出圓的圓心坐標和半徑.

  (2)掌握圓的一般方程,了解圓的一般方程的結構特征,熟練掌握圓的標準方程和一般方程之間的互化.

  (3)了解參數方程的概念,理解圓的參數方程,能夠進行圓的普通方程與參數方程之間的互化,能應用圓的參數方程解決有關的簡單問題.

  (4)掌握直線和圓的位置關系,會求圓的切線.

  (5)進一步理解曲線方程的概念、熟悉求曲線方程的方法.

  教學建議

  教材分析

  (1)知識結構

  (2)重點、難點分析

 、俦竟潈热萁虒W的重點是圓的標準方程、一般方程、參數方程的推導,根據條件求圓的方程,用圓的方程解決相關問題.

 、诒竟澋碾y點是圓的一般方程的結構特征,以及圓方程的求解和應用.

  教法建議

  (1)圓是最簡單的曲線.這節教材安排在學習了曲線方程概念和求曲線方程之后,學習三大圓錐曲線之前,旨在熟悉曲線和方程的理論,為后繼學習做好準備.同時,有關圓的問題,特別是直線與圓的位置關系問題,也是解析幾何中的基本問題,這些問題的解決為圓錐曲線問題的解決提供了基本的思想方法.因此教學中應加強練習,使學生確實掌握這一單元的知識和方法.

  (2)在解決有關圓的問題的過程中多次用到配方法、待定系數法等思想方法,教學中應多總結.

  (3)解決有關圓的問題,要經常用到一元二次方程的理論、平面幾何知識和前邊學過的解析幾何的基本知識,教師在教學中要注意多復習、多運用,培養學生運算能力和簡化運算過程的意識.

  (4)有關圓的內容非常豐富,有很多有價值的問題.建議適當選擇一些內容供學生研究.例如由過圓上一點的切線方程引申到切點弦方程就是一個很有價值的問題.類似的還有圓系方程等問題.

  教學設計示例

  圓的一般方程

  教學目標:

  (1)掌握圓的一般方程及其特點.

  (2)能將圓的一般方程轉化為圓的標準方程,從而求出圓心和半徑.

  (3)能用待定系數法,由已知條件求出圓的一般方程.

  (4)通過本節課學習,進一步掌握配方法和待定系數法.

  教學重點:(1)用配方法,把圓的一般方程轉化成標準方程,求出圓心和半徑.

  (2)用待定系數法求圓的方程.

  教學難點:圓的一般方程特點的研究.

  教學用具:計算機.

  教學方法:啟發引導法,討論法.

  教學過程:

  【引入】

  前邊已經學過了圓的標準方程

  把它展開得

  任何圓的方程都可以通過展開化成形如

 、

  的方程

  【問題1】

  形如①的方程的曲線是否都是圓?

  師生共同討論分析:

  如果①表示圓,那么它一定是某個圓的標準方程展開整理得到的我們把它再寫成原來的形式不就可以看出來了嗎?運用配方法,得

 、

  顯然②是不是圓方程與是什么樣的數密切相關,具體如下:

  (1)當時,②表示以為圓心、以為半徑的圓;

  (2)當時,②表示一個點;

  (3)當時,②不表示任何曲線.

  總結:任意形如①的方程可能表示一個圓,也可能表示一個點,還有可能什么也不表示.

  圓的一般方程的定義:

  當時,①表示以為圓心、以為半徑的圓,

  此時①稱作圓的一般方程.

  即稱形如的方程為圓的一般方程.

  【問題2】圓的一般方程的特點,與圓的標準方程的異同.

  (1)和的系數相同,都不為0.

  (2)沒有形如的二次項.

  圓的一般方程與一般的二元二次方程

 、

  相比較,上述(1)、(2)兩個條件僅是③表示圓的必要條件,而不是充分條件或充要條件.

  圓的一般方程與圓的`標準方程各有千秋:

  (1)圓的標準方程帶有明顯的幾何的影子,圓心和半徑一目了然.

  (2)圓的一般方程表現出明顯的代數的形式與結構,更適合方程理論的運用.

  【實例分析】

  例1:下列方程各表示什么圖形.

  (1) ;

  (2) ;

  一、教學內容分析

  向量作為工具在數學、物理以及實際生活中都有著廣泛的應用.

  本小節的重點是結合向量知識證明數學中直線的平行、垂直問題,以及不等式、三角公式的證明、物理學中的應用.

  二、教學目標設計

  1、通過利用向量知識解決不等式、三角及物理問題,感悟向量作為一種工具有著廣泛的應用,體會從不同角度去看待一些數學問題,使一些數學知識有機聯系,拓寬解決問題的思路.

  2、了解構造法在解題中的運用.

  三、教學重點及難點

  重點:平面向量知識在各個領域中應用.

  難點:向量的構造.

  四、教學流程設計

  五、教學過程設計

  一、復習與回顧

  1、提問:下列哪些量是向量?

  (1)力(2)功(3)位移(4)力矩

  2、上述四個量中,(1)(3)(4)是向量,而(2)不是,那它是什么?

  [說明]復習數量積的有關知識.

  二、學習新課

  例1(書中例5)

  向量作為一種工具,不僅在物理學科中有廣泛的應用,同時它在數學學科中也有許多妙用!請看

  例2(書中例3)

  證法(一)原不等式等價于,由基本不等式知(1)式成立,故原不等式成立.

  證法(二)向量法

  [說明]本例關鍵引導學生觀察不等式結構特點,構造向量,并發現(等號成立的充要條件是)

  例3(書中例4)

  [說明]本例的關鍵在于構造單位圓,利用向量數量積的兩個公式得到證明.

  二、鞏固練習

  1、如圖,某人在靜水中游泳,速度為km/h.

  (1)如果他徑直游向河對岸,水的流速為4 km/h,他實際沿什么方向前進?速度大小為多少?

  答案:沿北偏東方向前進,實際速度大小是8 km/h.

  (2)他必須朝哪個方向游才能沿與水流垂直的方向前進?實際前進的速度大小為多少?

  答案:朝北偏西方向前進,實際速度大小為km/h.

  三、課堂小結

  1、向量在物理、數學中有著廣泛的應用.

  2、要學會從不同的角度去看一個數學問題,是數學知識有機聯系.

  四、作業布置

  1、書面作業:課本P73,練習8.4 4

高二數學教案7

  目的要求:

  1.復習鞏固求曲線的方程的基本步驟;

  2.通過教學,逐步提高學生求貢線的方程的能力,靈活掌握解法步驟;

  3.滲透“等價轉化”、“數形結合”、“整體”思想,培養學生全面分析問題的能力,訓練思維的深刻性、廣闊性及嚴密性。

  教學重點、難點:

  方程的求法教學方法:講練結合、討論法

  教學過程:

  一、學點聚集:

  1.曲線C的方程是f(x,y)=0(或方程f(x,y)=0的曲線是C)實質是

 、偾C上任一點的坐標都是方程f(x,y)=0的解

  ②以方程f(x,y)=0的解為坐標的點都是曲線C上的點

  2.求曲線方程的基本步驟

 、俳ㄏ翟O點;

  ②尋等列式;

 、鄞鷵Q(坐標化);

 、芑啠

 、葑C明(若第四步為恒等變形,則這一步驟可省略)

  二、基礎訓練題:

  221.方程x-y=0的曲線是()

  A.一條直線和一條雙曲線B.兩個點C.兩條直線D.以上都不對

  2.如圖,曲線的方程是()

  A.x?y?0 B.x?y?0 C.

  xy?1 D.

  x?1 y3.到原點距離為6的點的軌跡方程是。

  4.到x軸的距離與其到y軸的距離之比為2的點的軌跡方程是。

  三、例題講解:

  例1:已知一條曲線在y軸右方,它上面的每一點到A?2,0?的距離減去它到y軸的距離的差都是2,求這條曲線的方程。

  例2:已知P(1,3)過P作兩條互相垂直的`直線l

  1、l2,它們分別和x軸、y軸交于B、C兩點,求線段BC的中點的軌跡方程。

  2例3:已知曲線y=x+1和定點A(3,1),B為曲線上任一點,點P在線段AB上,且有BP∶PA=1∶2,當點B在曲線上運動時,求點P的軌跡方程。

  鞏固練習:

  1.長為4的線段AB的兩個端點分別在x軸和y軸上滑動,求AB中點M的軌跡方程。

  22.已知△ABC中,B(-2,0),C(2,0)頂點A在拋物線y=x+1移動,求△ABC的重心G的軌跡方程。

  思考題:

  已知B(-3,0),C(3,0)且三角形ABC中BC邊上的高為3,求三角形ABC的垂心H的軌跡方程。

  小結:

  1.用直接法求軌跡方程時,所求點滿足的條件并不一定直接給出,需要仔細分析才能找到。

  2.用坐標轉移法求軌跡方程時要注意所求點和動點之間的聯系。

  作業:

  蘇大練習第57頁例3,教材第72頁第3題、第7題。

高二數學教案8

  教學目的:

  1、使學生理解線段的垂直平分線的性質定理及逆定理,掌握這兩個定理的關系并會用這兩個定理解決有關幾何問題。

  2、了解線段垂直平分線的軌跡問題。

  3、結合教學內容培養學生的動作思維、形象思維和抽象思維能力。

  教學重點:

  線段的垂直平分線性質定理及逆定理的引入證明及運用。

  教學難點:

  線段的垂直平分線性質定理及逆定理的關系。

  教學關鍵:

  1、垂直平分線上所有的點和線段兩端點的距離相等。

  2、到線段兩端點的距離相等的所有點都在這條線段的垂直平分線上。

  教具:投影儀及投影膠片。

  教學過程:

  一、提問

  1、角平分線的性質定理及逆定理是什么?

  2、怎樣做一條線段的垂直平分線?

  二、新課

  1、請同學們在課堂練習本上做線段AB的垂直平分線EF(請一名同學在黑板上做)。

  2、在EF上任取一點P,連結PA、PB量出PA=?,PB=?引導學生觀察這兩個值有什么關系?

  通過學生的觀察、分析得出結果PA=PB,再取一點P'試一試仍然有P'A=P'B,引導學生猜想EF上的所有點和點A、點B的距離都相等,再請同學把這一結論敘述成命題(用幻燈展示)。

  定理:線段的垂直平分線上的點和這條線段的兩個端點的距離相等。

  這個命題,是我們通過作圖、觀察、猜想得到的,還得在理論上加以證明是真命題才能做為定理。

  例題:

  已知:如圖,直線EF⊥AB,垂足為C,且AC=CB,點P在EF上

  求證:PA=PB

  如何證明PA=PB學生分析得出只要證RTΔPCA≌RTΔPCB

  :證明:∵PC⊥AB(已知)

  ∴∠PCA=∠PCB(垂直的定義)

  在ΔPCA和ΔPCB中

  ∴ΔPCA≌ΔPCB(SAS)

  即:PA=PB(全等三角形的對應邊相等)。

  反過來,如果PA=PB,P1A=P1B,點P,P1在什么線上?

  過P,P1做直線EF交AB于C,可證明ΔPAP1≌PBP1(SSS)

  ∴EF是等腰三角型ΔPAB的頂角平分線

  ∴EF是AB的垂直平分線(等腰三角形三線合一性質)

  ∴P,P1在AB的垂直平分線上,于是得出上述定理的逆定理(啟發學生敘述)(用幻燈展示)。

  逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

  根據上述定理和逆定理可以知道:直線MN可以看作和兩點A、B的距離相等的所有點的集合。

  線段的垂直平分線可以看作是和線段兩個端點距離相等的所有點的集合。

  三、舉例(用幻燈展示)

  例:已知,如圖ΔABC中,邊AB,BC的垂直平分線相交于點P,求證:PA=PB=PC。

  證明:∵點P在線段AB的垂直平分線上

  ∴PA=PB

  同理PB=PC

  ∴PA=PB=PC

  由例題PA=PC知點P在AC的垂直平分線上,所以三角形三邊的垂直平分線交于一點P,這點到三個頂點的距離相等。

  四、小結

  正確的運用這兩個定理的關鍵是區別它們的條件與結論,加強證明前的分析,找出證明的途徑。定理的作用是可證明兩條線段相等或點在線段的垂直平分線上。

  《教案設計說明》

  線段的垂直平分線的性質定理及逆定理,都是幾何中的重要定理,也是一條重要軌跡。在幾何證明、計算、作圖中都有重要應用。我講授這節課是線段垂直平分線的第一節課,主要完成定理的引出、證明和初步的運用。

  在設計教案時,我結合教材內容,對如何導入新課,引出定理以及證明進行了探索。在導入新課這一環節上我先讓學生做一條線段AB的垂直平分線EF,在EF上取一點P,讓學生量出PA、PB的長度,引導學生觀察、討論每個人量得的'這兩個長度之間有什么關系:得到什么結論?學生回答:PA=PB。然后再讓學生取一點試一試,這兩個長度也相等,由此引導學生猜想到線段垂直平分線的性質定理。在這一過程中讓學生主動積極的參與到教學中來,使學生通過作圖、觀察、量一量再得出結論。從而把知識的形成過程轉化為學生親自參與、發現、探索的過程。在教學時,引導學生分析性質定理的題設與結論,畫圖寫出已知、求證,通過分析由學生得出證明性質定理的方法,這個過程既是探索過程也是調動學生動腦思考的過程,只有學生動腦思考了,才能真正理解線段垂直平分線的性質定理,以及證明方法。在此基礎上再提出如果有兩點到線段的兩端點的距離相等,這樣的點應在什么樣的直線上?由條件得出這樣的點在線段的垂直平分線上,從而引出性質定理的逆定理,由上述兩個定理使學生再進一步知道線段的垂直平分線可以看作是到線段兩端點距離的所有點的集合。這樣可以幫助學生認識理論來源于實踐又服務于實踐的道理,也能提高他們學習的積極性,加深對所學知識的理解。在講解例題時引導學生用所學的線段垂直平分線的性質定理以及逆定理來證,避免用三角形全等來證。最后總結點P是三角形三邊垂直平分線的交點,這個點到三個頂點的距離相等。為了使學生當堂掌握兩個定理的靈活運用,讓學生做87頁的兩個練習,以達到鞏固知識的目的。

高二數學教案9

  一、學習者特征分析

  本節課內容是面向高二下學期的學生,主要是進行思維的訓練。學生在高一的時候已經學過這些數學思維方法,但是對這些知識還沒有進行概念化的歸納和專門的訓練。學生不知道分析法和綜合法的時候還是會用一點,以以往的經驗,學生一旦學習概念后,反而覺得難度大,概念混淆,因此,這一教學內容的設計是針對學生的這一情況,設計專題學習網站,通過學生之間經過學習,交流,課后反復思考的,進一步深化概念的過程,培養學生的數學思維能力。

  二、教學目標

  知識與技能

  1、 體會數學思維中的分析法和綜合法;

  2、 會用分析法和綜合法去解決問題。

  過程與方法

  1、 通過對分析法綜合法的學習,培養學生的數學思維能力;

  2、 培養學生的數學閱讀和理解能力;

  3、 培養學生的評價和反思能力。

  情感態度與價值觀

  1. 交流、分享運用數學思維解決問題的喜悅;

  2. 提高學生學習數學的興趣;

  3. 增強學習數學的信心。

  三、教學內容

  本節課是數學思維訓練專題課,專門訓練學生利用分析法和綜合法解題。分析法在數學中特指從結果(結論)出發追溯其產生原因的思維方法,即執果索因法。綜合思維方法:綜合是以已知性質和分析為基礎的,從已知出發逐步推求位未知的思考方法,即執果導因法。這兩種數學思維方法是數學思維方法中最基礎也是最重要的方法,是學生的思維訓練的重要內容。

  四、教學策略的設計

  1、 情境的設計

  情境描述

  情境簡要描述

  呈現方式

  趣味問題

  從前有個國王在處死那些犯了罪的臣子的時候,總是出一些這樣那樣的智力題給犯人做,用這種方法給那些更聰明的人一條生路,有一位正直的青年叫亞瑟,不幸得罪了國王,國王判他死罪,他所面臨的問題是:“這里有三個盒子,金盒,銀盒和鉛盒,免死金牌放在其中一個盒子內,每只盒子各寫一句話,但其中只有一句是真的`,你要是猜中了免死金牌在哪個盒子里,就免你一死罪!甭斆鞯膩喩涍^推理而獲知免死金牌所放的盒子,從而救了自己的命,請問亞瑟是如何推理的?

  網頁

  2、 教學資源的設計

  資源類型

  資源內容簡要描述

  資源來源

  相關故事

  通過有趣的推理故事,如“推理救命的故事”,“寶藏的故事,用于激發學生的學習興趣。

  網上下載

  學習網站

  專題學習網站,嵌入了經過修改適用于本課的論壇,在線測試等。

  自行制作

  3、 教學工具:計算機

  4、 教學策略:自主探究學習策略,任務驅動策略、反思策略

  5、 教學環境:網絡教室

  五、教學流程設計

  1、創設情景,吸引學生注意

  教師活動

  學生活動

  資源/工具

  設計思想

  提出“推理救命問題”

  積極思考,尋找方法

  學習網站

  以具有趣味性的故事入手,吸引學生的注意,點明本節課的目的。

  2、自主探究,獲取知識

  教師活動

  學生活動

  資源/工具

  設計思想

  1、初試牛刀:讓學生試做思維訓練題。

  2、挑戰高考題:在高考題中充分體現分析法,綜合法。

  3、舉一反三:讓學生學會總結

  學以致用:

  4、把本節的方法應用到解決數學問題中。

  積極思考,互相交流,發現問題,解決問題。

  學習網站

  1、讓學生在輕松活潑的氛圍下帶著問題,自主、積極地學習,有助于培養學生的自我探索的能力。

  2、超級鏈接控制性好,交互性強,可讓學生在較短的時間內收集積累更多的信息,拓寬學生的知識面。

  3、培養學生收集信息、處理信息的能力。

  3、總結概念,深化概念

  教師活動

  學生活動

  資源/工具

  設計思想

  歸納本節的方法:分析法和綜合法。并指出:數學思維的訓練不單只是一節簡單的專題課,我們的同學在平常多留心身邊事物,多思考問題,不斷提高數學思維能力。

  體會分析法和綜合法的概念,并在論壇上發表自己對概念的理解。

  學習網站論壇

  通過對具體問題的概念化,加深對概念的理解。

  4、自主交流,知識遷移

  教師活動

  學生活動

  資源/工具

  設計思想

  提出寶藏問題并指導學生利用BBs論壇進行討論

  學生在論壇里充分地發表自己的看法

  學習網站論壇

  通過自主交流,增強分析問題的能力和解決問題的能力

  5、在線測試,評價及反饋

  教師活動

  學生活動

  資源/工具

  設計思想

  利用學習網站制作一些簡單的訓練題目

  獨立完成在線的測試

  學習網站

  及時反饋課堂學習效果。

  6、課后任務

  教師活動

  學生活動

  資源/工具

  設計思想

  布置課后任務:在網絡上收集推理分析的相關例子,在學習網站的論壇上討論。

  記錄要求,并在課后完成。

  網絡資源和學習網站

  通過課后的任務訓練,進一步提高學生的數學思維能力,把思維訓練延續到課堂外。

高二數學教案10

  教學內容

  教材第2頁的例2,第3頁的小數乘法法則和“做一做”,練習一的第5?9題。

  素質教育目標

 。ㄒ唬┲R教學點

  1.使學生理解一個數乘以小數的意義。

  2.掌握小數乘法的計算法則。

 。ǘ┠芰τ柧汓c

  1.能說出小數乘法算式所表示的意義。

  2.能比較正確地計算小數乘法,提高計算能力。

  3.培養學生的遷移類推能力和概括能力以及運用所學知識解決新問題的能力。

 。ㄈ┑掠凉B透點

  繼續滲透轉化思想。

  教學重點:

  理解一個數乘以小數的意義,會應用小數乘法的計算法則正確地進行計算。

  教學難點:

  理解一個數乘以小數的意義和小數乘法中積的小數點的定位。

  教具學具準備:

  口算卡片、投影片。

  教學步驟

  一、鋪墊孕伏

  1.口算:

  0.3×6 0.8×4 7.2×0 4.2×8

  0.25×4 3.6×3 4.3×5 0.6×9

  2.說出下列小數表示的意義:

  0.2 0.5 0.45 0.824

  使學生明確一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……

  3.復習例1,花布每米6.5元,買5米要用多少元?

 。1)指名列式計算,然后說一說小數乘以整數的意義和小數乘以整數的計算方法。

 。2)引導學生知道:每米6.5元是單價,5米是數量,求的是總價。根據單價×數量=總價也可以列出乘法算式。

  二、探究新知

  1.理解一個數乘以小數的意義。

  (1)教學例2

 、俪鍪纠2花布每米6.5元,買0.5米用多少元?

  ②讀題,理解題意,從題中你知道了什么?

  引導學生知道:每米6.5元是單價,0.5米是買的`數量,求的是總價。根據單價×數量=總價可以列式為6.5×0.5。

  教師板書:

  6.5×0.5

 、塾镁段圖表示題中的數量關系:

  ④啟發學生理解:0.5米是1米的十分之五,6.5×0.5就是求6.5的十分之五是多少。

  教師板書:

  求6.5的十分之五

  引導學生類推:

  6.5×0.4就是求6.5的十分之四是多少,

  6.5×0.7就是求6.5的十分之七是多少,

  ……

  一個數乘以零點幾就是求這個數的十分之幾是多少。

  互相討論得出結論:一個數乘以一位小數的意義是求這個數的十分之幾。

 。2)補充例2,買0.82米用多少元?

  ①引導學生用線段圖表示:

 、趩l學生理解:每米6.5元是布的單價,0.82米是買布的數量,求的是總價,列式為6.5×0.82。

  教師板書:

  6.5×0.82

  0.82米是1米的百分之八十二,6.5×0.82就是求6.5的百分之八十二。

  教師板書:

  求6.5的百分之八十二

  仿照6.5×0.5的教學方法,引導學生類推得出:

  一個數乘以兩位小數的意義就是求這個數的百分之幾。

 、蹘熒餐〗Y:一個數乘以一位小數的意義是求這個數的十分之幾,乘以兩位小數的意義是求這個數的百分之幾。

 、芤龑W生類推:一個數乘以三位小數就是求這個數的千分之幾,一個數乘以四位小數就是求這個數的萬分之幾,……

  最后概括板書:一個數乘以小數的意義是求這個數的十分之幾,百分之幾,千分之幾……

  2.探究一個數乘以小數的計算方法。

 。1)提出問題,學生討論:

  計算小數乘以整數,是把小數轉化成整數計算的,6.5×0.5和6.5×0.82這兩個算式中,被乘數和乘數都含有小數位,應該怎樣計算?

  (2)通過討論匯報,使學生明白:把6.5×0.5變成整數乘法,6.5變成65擴大了10倍,0.5變成5也擴大了10倍,這樣乘出來的積就擴大了10×10=100倍,要求原來的積,應把乘出來的積再縮小100倍。同時教師板書:

  把6.5×0.82變成整數乘法,6.5變成65擴大10倍,0.82變成82擴大100倍,這樣乘出來的積就擴大了10×100=1000倍。要求原來的積,應把乘出來的積再縮小1000倍。教師板書:

  說明書寫的格式,并提示學生:要先點小數點,再把小數末尾的“0”劃掉。

  3.總結小數乘法的計算法則。

 。1)引導學生觀察算式得出:兩個因數中一共有兩位小數,積中就有兩位小數;兩個因數中一共有三位小數,積中就有三位小數。

 。2)想一想:6.05×0.82的積中有幾位小數?6.052×0.82的積中有幾位小數?

 。3)引導學生概括:兩個因數中一共有幾位小數,積中就幾位小數。

 。4)在小數乘以整數的計算方法的基礎上,師生共同歸納總結出小數乘法的計算法則。

 。5)完成法則下面的“做一做”。

  出示 67×0.3 2.14×6.2 0.375×12.4 2.16×3.52先判斷積里應該有幾位小數,再讓學生獨立計算,然后集體訂正。訂正時學生說一說是怎樣計算的。

  三、鞏固發展

  1.練習一5題

 。1)題,先引導學生理解“十分之三”和“一半”分別用什么數表示,然后學生獨立列式。

  (2)題,學生獨立列式,訂正時,說一說根據什么列式的。

  2.說出下列算式表示的意義:

  2.54×0.8 13×0.36 16.2×15 24×0.035

  3.練習一6題

  4.在下面各式的積中點上小數點。

  5.練習一8題。學生獨立填書,訂正時指名說一說是怎樣想的。

  四、全課小結:引導學生回憶這節課學習了什么知識?

  五、布置作業:練習一7題、9題。

高二數學教案11

  一、教學目標

  1、了解函數的單調性和奇偶性的概念,把握有關證實和判定的基本方法、

 。1)了解并區分增函數,減函數,單調性,單調區間,奇函數,偶函數等概念、

 。2)能從數和形兩個角度熟悉單調性和奇偶性、

 。3)能借助圖象判定一些函數的單調性,能利用定義證實某些函數的單調性;能用定義判定某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程、

  2、通過函數單調性的證實,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養學生的觀察,歸納,抽象的能力,同時滲透數形結合,從非凡到一般的數學思想、

  3、通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養樂于求索的精神,形成科學,嚴謹的研究態度、

  二、教學建議

 。ㄒ唬┲R結構

  (1)函數單調性的概念。包括增函數、減函數的定義,單調區間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系、

 。2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像、

 。ǘ┲攸c難點分析

 。1)本節教學的重點是函數的單調性,奇偶性概念的形成與熟悉、教學的難點是領悟函數單調性,奇偶性的本質,把握單調性的證實、

 。2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它、這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫、單調性的證實是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證實,也沒有意識到它的重要性,所以單調性的證實自然就是教學中的難點、

  (三)教法建議

  (1)函數單調性概念引入時,可以先從學生熟悉的一次函數,二次函數、反比例函數圖象出發,回憶圖象的增減性,從這點感性熟悉出發,通過問題逐步向抽象的定義靠攏、如可以設計這樣的問題:圖象怎么就升上去了?可以從點的.坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發現自變量與函數值的的變化規律,再把這種規律用數學語言表示出來、在這個過程中對一些關鍵的詞語(某個區間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結合起來、

  (2)函數單調性證實的步驟是嚴格規定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規律、

  函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來、經歷了這樣的過程,再得到等式時,就比較輕易體會它代表的是無數多個等式,是個恒等式、關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發現定義域的對稱性,同時還可以借助圖象(如)說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件、

高二數學教案12

  教學目標:

  通過生動有趣的“數學樂園”活動,使學生加深對10以內數的認識,進一步鞏固10以內的加減法,充分感受數學與日常生活的密切聯系。使學生在理解和掌握知識的同時,感受到學習數學的樂趣,提高學習數學的興趣。教學準備:

  1.數字迷宮圖十幅,信箱四個,口算卡片40張

  2.自制教學課件,教室場景布置,學生坐成4行。

  教學過程:

  一、導入:小朋友們,今天老師帶大家到“數學樂園”去玩(老師指“數學樂園”場景布置)。大家想不想去呀可是在“數學樂園”的門口有四個信箱,需要每個小朋友當一回“小小郵遞員”,把“數字娃娃”藏在你們抽屜里的“信”送到正確的信箱里,就能進人數學樂園,大家有沒有信心

  二、活動送信游戲

  1.分組送信。教室講臺上放四個標有數字的信箱,老師問:怎樣才能把“信”送到正確的信箱里呢只要把“信”(即口算卡片)上的題目得數算出來,得數是幾,就把“信”送到標有這個數的信箱里。每個學生從抽屜里拿出一封“信”(即口算卡片),在音樂聲中分組走上講臺送“信”。注意:有的卡片上面的得數不是信箱的標號,是沒法送出的信。對于沒有送出的信,讓學生說說為什么送不出去。

  2.檢查送信游戲的正確性。學生投完信后,老師把四個信箱分發到四個小組(課前學生坐成四行),由小組長主持檢查每個信箱里的口算卡片是否送對了,學生做手勢表示對錯進行檢查,看有沒有送錯的信。對于送錯的信,讓學生說說為什么送錯了。各組檢查完后,小組長向老師匯報檢查結果。

  三、活動二起立游戲

  好啊,我們進人數學樂園啦!看,數學樂園里有很多小動物在等著我們呢!老師出示包括乖乖虎、皮卡丘、機器貓的畫面(課件),你們喜歡它們嗎讓學生分組選擇喜歡的小動物。全班坐成四行,每行10人,各行報數(同時進行)。

  老師根據學生的選擇點擊小動物圖案,出示下列四題:

  1.請這一組的前面四個小朋友站起來。請第四個小朋友拍四下手。從前往后數你是第幾個從后往前數你是第幾個

  2.請從前往后數第五個小朋友站起來,:你前面有幾個小朋友后面有幾個小朋友你這一組有幾個小朋友你是怎么知道的

  3.請從前往后數第六個小朋友站起來。不許往后看,你知道你后面有幾個小朋友嗎你是怎么知道的

  4.請從后往前數第二個小朋友站起來。你這一組有幾個男孩有幾個女孩合起來一共有幾個小朋友你是怎么知道的

  四、活動三數字迷宮

  前后左右四人為一個小組,每組發“數字迷宮”圖一幅。說明:“數字迷宮”有一個人口,兩個出口,由數字1-9組成,從人口到出口必須按1、2、3、……9的順序走。四個小朋友討論不同的路線,用不同顏色的水彩筆畫出路線圖,比一比看哪組想的路線最多畫完后,分組統計出本組所畫路線的條數,用水彩筆寫在圖的右下角,然后與別組交換統計路線的條數。

  老師把每組的迷宮圖貼在黑板上進行評比,小黑板上出示條形統計圖的網格.每組組長上臺,根據本組畫的條數的多少,用小正方形貼出直條。

  全班看圖討論下列問題:看___組想出的路線最多,第一名是二___組,畫了___種方法;第二名是___組,畫了___種方法;第三名是___組,畫了___種方法;一組和___組畫的同樣多;___組比___組多畫___條;___組比___組少畫___條;

  五、總結:

  今天,大家在“數學樂園”里玩得開不開心在我們玩的游戲中運用了前面所學的10以內數的認識和加減法的知識。以后我們學會了更多的知識,老師再帶大家到“數學樂園”里來玩。

  評析:

  在這篇教學設計中我們看到新課程理念的存在,并感受到它的沖擊力。新課程不再過分注重知識的傳授,學生獲得知識與技能的過程同時成為學會學習和形成正確價值觀的過程。不再過分強調學科本位,不再偏重書本知識,加強了課程內容與學生生活以及現代社會發展的聯系,關注學生的學習興趣和經驗,注重學生終身學習必備的基礎知識和技能,同時更為關注學生在情感、態度、價值觀和一般能力等全面發展。倡導學生主動參與,樂于探究,勤于動手,培養學生搜集和處理信息的能力,分析和解決問題的能力,以及交流、合作的能力。

  數學活動課是集知識性、趣味性和娛樂性于一體的課程,它重在學生參與,重在學生實踐,旨在鞏固知識、運用知識。在這里,數學得到了升華。數學的教育功能得到充分的體現。課程標準指出:“隨著社會的發展,‘終身學習’和‘持續、和諧發展’等教育理念進一步得到人們的認同,數學教育觀面臨著重大變革,作為教育內容的數學,有著自身的特點與規律,它的基本出發點是促進學生的發展。因此,義務教育階段數學課程不僅要考慮數學自身的特點,而且更應當遵循學生學習數學的心理規律,關注每一個學生在情感態度,思維能力,自我意識等多方面的'進步和發展!蔽蚁,這篇教學設計,對課程標準中的基本理念作了最好的解讀。課堂教學從課內延伸到課外,從只注重學生知識結構的培養和認知圖式的建構,到關注學生的具體生活和直接經驗,并真正地深入學生的精神世界,從而使教學活動的基礎性,發展性和創造性達到了統一,體現了“學習不是為了‘占有’別人的知識,而是為了‘生長’自己的知識”這種現代教育觀。由此我們也看到了新課程強大的生命力,它正在促進學生有意義的學習方式和轉變教師的教學行為。促進學生和教師共同成長。

  我所執教的這節一年級《數學樂園》活動課除體現了以上宗旨外,還具備以下幾個特點:

  1、以游戲為主線,層層遞進。隨著時代的發展,教育面臨的挑戰,各國都在進行教學改革,其重心就是探討“樂學”,提高教學效率。游戲教學在貫注“樂學”思想方面是獨領風騷的。它依據教學內容創設情境,就是為了從根本上解決學生的“樂學”問題。教學游戲,是學生樂于學習之“源”。在這個“源”中,既有學生看得見、摸得著的實體形象,喚起學生學習的愉悅;又展現了學習的智力背景,鼓舞學生自動求知。它有感性認識的堅實基礎,也有促使學生理性認識的橋梁;它調動學生智力因素與非智力因素的積極參與,也有著學生生理感官與心理需求的快樂與滿足。它調動與調節學生左、右腦同時投人學習,激發學生以情感需要為核心的一切生理和心理上的因素,以此推動學生認真學習,順利開展認知活動。教學開始,便以“玩”導人,先“玩”“送信游戲”,再“玩”“起立游戲”,接著“玩”走“數字迷宮”,最后結束時還許諾下次帶學生到“數學樂園”里來玩。這一系列的“玩”做到了有序牽引,層層遞進,激發了學生的“玩興”,愉快而輕松地復習了10以內數的有關知識,真正做到了寓教于樂,寓學于樂,“樂”在活動中。

  2、以學生為主體,人人參與。皮亞杰認為:兒童學習的最根本途徑應該是活動;顒邮锹撓抵骺陀^的橋梁,是認識發展的直接源泉。因此教師在課堂教學中要改變那種重教法、輕學法的狀況,加強對學生學法的指導。在課堂上要給學生提供豐富的、充足的、典型的、較為完整的感性材料,有目的地創設學生活動的空間,調動學生的多種感官,放手讓學生動手、動口、動腦全方位參與教學活動。使學生在生動活潑的實踐中去發現、認識、理解、掌握所學知識,發展自己的認知結構。在教學中,把抽象的數學知識同具體的實物結合起來,化難為易,化抽象為具體。而活動課,更應讓全體學生“動”起來,做到人人參與,這節課便體現了這一點。第一個活動,全班學生參與“投信”,立即形成了熱烈的氣氛,學生的興奮情緒受到激發。在第二個活動中,雖不是人人火爆,但做到了:一人表演,全班監督;一組參與,全班評價。第三個活動,處于“靜態”的活動中,全班分組,人人以“筆”代“走”,畫出走迷宮的路線。這樣,這節課的學生參與率為百分之百,做到了參與內容廣,參與時間長,教學效果好。

  3、以知識為主流,面面俱到;顒诱n僅只是一種課堂形式,其內容才是活動課的實質。這節課為加深學生對10以內數的有關概念和計算的認識,把有關知識有機地、有序地分布在每個游戲中。第一個送信游戲,以計算為主,根據計算結果選擇對應的信箱,一部分“死信”(結果無對應信箱)需作出不可投的判斷,對誤投的要訂正處理,對投信的質量全班作出評價。第二個活動,巧妙地把前面與后面的位置問題、基數與序數的問題、加法和連加的問題,都安排在直觀的對比中和活動的氛圍中進行處理和鞏固。第三個活動是知識的綜合性運用,以順序的認識為根本,走出不同的路線,認識不變中有變,并輔以簡單的統計,復習最多與最少、同樣多與多(少)幾。這三個活動中的每個環節,都孕伏了所學的知識。在活動中,大容量的復習鞏固已學過的知識。

  4、以媒體為主向,項項直觀;顒诱n是一種實踐,實踐需要媒體、需要直觀,這一節課充分的體現了媒體和直觀。執教者首先考慮了活動課的氛圍,精心布置了場景,使學生親臨其境;其次,打破教室組織結構,去掉桌子,改坐四行,給學生一種新鮮感;第三,準備了不少實物道具,讓學生實際操作,調動了學生的積極性;第四,執教者精心設計制作了電腦軟件,其形式和形狀都新穎、可愛,使學生在現代媒體中接受“美”的教育。

  總之,這是一節生動活潑、情趣盎然、充分體現課程改革理念的低年級數學活動課。

高二數學教案13

  一、課前預習目標

  理解并掌握雙曲線的幾何性質,并能從雙曲線的標準方程出發,推導出這些性質,并能具體估計雙曲線的形狀特征。

  二、預習內容

  1、雙曲線的幾何性質及初步運用。

  類比橢圓的幾何性質。

  2。雙曲線的漸近線方程的導出和論證。

  觀察以原點為中心,2a、2b長為鄰邊的矩形的兩條對角線,再論證這兩條對角線即為雙曲線的漸近線。

  三、提出疑惑

  同學們,通過你的自主學習,你還有哪些疑惑,請把它填在下面的表格中

  課內探究

  1、橢圓與雙曲線的幾何性質異同點分析

  2、描述雙曲線的漸進線的作用及特征

  3、描述雙曲線的離心率的作用及特征

  4、例、練習嘗試訓練:

  例1。求雙曲線9y2—16x2=144的實半軸長和虛半軸長、焦點坐標、離心率、漸近線方程。

  解:

  解:

  5、雙曲線的.第二定義

  1)。定義(由學生歸納給出)

  2)。說明

 。ㄆ撸┬〗Y(由學生課后完成)

  將雙曲線的幾何性質按兩種標準方程形式列表小結。

  作業:

  1。已知雙曲線方程如下,求它們的兩個焦點、離心率e和漸近線方程。

  (1)16x2—9y2=144;

  (2)16x2—9y2=—144。

  2。求雙曲線的標準方程:

 。1)實軸的長是10,虛軸長是8,焦點在x軸上;

 。2)焦距是10,虛軸長是8,焦點在y軸上;

  曲線的方程。

  點到兩準線及右焦點的距離。

高二數學教案14

  教學目標:

  1.理解平面直角坐標系的意義;掌握在平面直角坐標系中刻畫點的位置的方法。

  2.掌握坐標法解決幾何問題的步驟;體會坐標系的作用。

  教學重點:

  體會直角坐標系的作用。

  教學難點

  能夠建立適當的直角坐標系,解決數學問題。

  授課類型:

  新授課

  教學模式:

  啟發、誘導發現教學。

  教 具:

  多媒體、實物投影儀

  教學過程:

  一、復習引入:

  情境1:為了確保宇宙飛船在預定的軌道上運行,并在按計劃完成科學考察任務后,安全、準確的返回地球,從火箭升空的時刻開始,需要隨時測定飛船在空中的位置機器運動的軌跡。

  情境2:運動會的開幕式上常常有大型團體操的表演,其中不斷變化的背景圖案是由看臺上座位排列整齊的人群不斷翻動手中的一本畫布構成的。要出現正確的背景圖案,需要缺點不同的畫布所在的位置。

  問題1:如何刻畫一個幾何圖形的位置?

  問題2:如何創建坐標系?

  二、學生活動

  學生回顧

  刻畫一個幾何圖形的位置,需要設定一個參照系

  1、數軸 它使直線上任一點P都可以由惟一的實數x確定

  2、平面直角坐標系

  在平面上,當取定兩條互相垂直的直線的交點為原點,并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標系。它使平面上任一點P都可以由惟一的實數對(x,y)確定。

  3、空間直角坐標系

  在空間中,選擇兩兩垂直且交于一點的三條直線,當取定這三條直線的交點為原點,并確定了度量單位和這三條直線方向,就建立了空間直角坐標系。它使空間上任一點P都可以由惟一的實數對(x,y,z)確定。

  三、講解新課:

  1、建立坐標系是為了確定點的位置,因此,在所建的坐標系中應滿足:

  任意一點都有確定的坐標與其對應;反之,依據一個點的坐標就能確定這個點的位置

  2、確定點的位置就是求出這個點在設定的坐標系中的坐標

  四、數學運用

  例1 選擇適當的平面直角坐標系,表示邊長為1的正六邊形的頂點。

  變式訓練

  如何通過它們到點O的距離以及它們相對于點O的方位來刻畫,即用”距離和方向”確定點的位置

  例2 已知B村位于A村的正西方1公里處,原計劃經過B村沿著北偏東60的方向設一條地下管線m.但在A村的西北方向400米出,發現一古代文物遺址W.根據初步勘探的'結果,文物管理部門將遺址W周圍100米范圍劃為禁區。試問:埋設地下管線m的計劃需要修改嗎?

  變式訓練

  1一炮彈在某處爆炸,在A處聽到爆炸的時間比在B處晚2s,已知A、B兩地相距800米,并且此時的聲速為340m/s,求曲線的方程

  2在面積為1的中,建立適當的坐標系,求以M,N為焦點并過點P的橢圓方程

  例3 已知Q(a,b),分別按下列條件求出P 的坐標

 。1)P是點Q 關于點M(m,n)的對稱點

 。2)P是點Q 關于直線l:x-y+4=0的對稱點(Q不在直線1上)

  變式訓練

  用兩種以上的方法證明:三角形的三條高線交于一點。

  思考

  通過平面變換可以把曲線變為中心在原點的單位圓,請求出該復合變換?

  五、小 結:本節課學習了以下內容:

  1.平面直角坐標系的意義。

  2. 利用平面直角坐標系解決相應的數學問題。

高二數學教案15

  教學目標

 。1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據條件熟練地求出直線的方程。

 。2)理解直線方程幾種形式之間的內在聯系,能在整體上把握直線的方程。

  (3)掌握直線方程各種形式之間的互化。

 。4)通過直線方程一般式的教學培養學生全面、系統、周密地分析、討論問題的能力。

 。5)通過直線方程特殊式與一般式轉化的教學,培養學生靈活的思維品質和辯證唯物主義觀點。

  (6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法。

  教學建議

  1、教材分析

 。1)知識結構

  由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉化歸結為直線的一般式;同時一般式也可以轉化成特殊式。

 。2)重點、難點分析

 、俦竟澋闹攸c是直線方程的點斜式、兩點式、一般式,以及根據具體條件求出直線的方程。

  解析幾何有兩項根本性的任務:一個是求曲線的方程;另一個就是用方程研究曲線。本節內容就是求直線的方程,因此是非常重要的內容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用。

  直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭。學生對點斜式學習的效果將直接影響后繼知識的學習。

 、诒竟澋碾y點是直線方程特殊形式的限制條件,直線方程的整體結構,直線與二元一次方程的關系證明。

  2、教法建議

 。1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯。教學中各部分知識之間過渡要自然流暢,不生硬。

 。2)直線方程的一般式反映了直線方程各種形式之間的統一性,教學中應充分揭示直線方程本質屬性,建立二元一次方程與直線的對應關系,為繼續學習“曲線方程”打下基礎。

  直線一般式方程都是字母系數,在揭示這一概念深刻內涵時,還需要進行正反兩方面的分析論證。教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養學生全面、系統、辯證、周密地分析、討論問題的'能力,特別是培養學生邏輯思維能力,同時培養學生辯證唯物主義觀點

 。3)在強調幾種形式互化時要向學生充分揭示各種形式的特點,它們的幾何特征,參數的意義等,使學生明白為什么要轉化,并加深對各種形式的理解。

 。4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件。兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率。因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要。教學中應突出點斜式、兩點式和一般式三個教學高潮。

  求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程。根據兩個條件運用待定系數法和方程思想求直線方程。

 。5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數量,因而是一個實數;距離是線段的長度,是一個正實數(或非負實數)。

  (6)本節中有不少與函數、不等式、三角函數有關的問題,是函數、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關的問題指導學生練習,培養學生的綜合能力。

 。7)直線方程的理論在其他學科和生產生活實際中有大量的應用。教學中注意聯系實際和其它學科,教師要注意引導,增強學生用數學的意識和能力。

 。8)本節不少內容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上。

  教學設計示例

  直線方程的一般形式

  教學目標:

  (1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化。

  (2)理解直線與二元一次方程的關系及其證明

  (3)培養學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統一的觀點。

  教學重點、難點:直線方程的一般式。直線與二元一次方程(不同時為0)的對應關系及其證明。

  教學用具:計算機

  教學方法:啟發引導法,討論法

  教學過程:

  下面給出教學實施過程設計的簡要思路:

  教學設計思路:

  (一)引入的設計

  前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:

  問:說出過點(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是,屬于二元一次方程,因為未知數有兩個,它們的次數為一次。

  肯定學生回答,并糾正學生中不規范的表述。再看一個問題:

  問:求出過點,的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是(或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的次數為一次。

  肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的次數為一次”。

  啟發:你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論。

  學生紛紛談出自己的想法,教師邊評價邊啟發引導,使學生的認識統一到如下問題:

  【問題1】“任意直線的方程都是二元一次方程嗎?”

 。ǘ┍竟澲黧w內容教學的設計

  這是本節課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路。

  學生或獨立研究,或合作研究,教師巡視指導。

  經過一定時間的研究,教師組織開展集體討論。首先讓學生陳述解決思路或解決方案:

  思路一:…

  思路二:…

  ……

  教師組織評價,確定方案(其它待課下研究)如下:

  按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在。

  當存在時,直線的截距也一定存在,直線的方程可表示為,它是二元一次方程。

  當不存在時,直線的方程可表示為形式的方程,它是二元一次方程嗎?

  學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:

  平面直角坐標系中直線上點的坐標形式,與其它直線上點的坐標形式沒有任何區別,根據直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。

  綜合兩種情況,我們得出如下結論:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于直線的二元一次方程。

  至此,我們的問題1就解決了。簡單點說就是:直線方程都是二元一次方程。而且這個方程一定可以表示成或的形式,準確地說應該是“要么形如這樣,要么形如這樣的方程”。

  同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?

  學生們不難得出:二者可以概括為統一的形式。

  這樣上邊的結論可以表述如下:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時為0)的二元一次方程。

  啟發:任何一條直線都有這種形式的方程。你是否覺得還有什么與之相關的問題呢?

  【問題2】任何形如(其中、不同時為0)的二元一次方程都表示一條直線嗎?

  不難看出上邊的結論只是直線與方程相互關系的一個方面,這個問題是它的另一方面。這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論。那么如何研究呢?

  師生共同討論,評價不同思路,達成共識:

  回顧上邊解決問題的思路,發現原路返回就是非常好的思路,即方程(其中、不同時為0)系數是否為0恰好對應斜率是否存在,即

 。1)當時,方程可化為

  這是表示斜率為、在軸上的截距為的直線。

  (2)當時,由于、不同時為0,必有,方程可化為

  這表示一條與軸垂直的直線。

  因此,得到結論:

  在平面直角坐標系中,任何形如(其中、不同時為0)的二元一次方程都表示一條直線。

  為方便,我們把(其中、不同時為0)稱作直線方程的一般式是合理的。

  【動畫演示】

  演示“直線各參數。gsp”文件,體會任何二元一次方程都表示一條直線。

  至此,我們的第二個問題也圓滿解決,而且我們還發現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系。

 。ㄈ┚毩曥柟、總結提高、板書和作業等環節的設計在此從略

【高二數學教案】相關文章:

高二數學教案06-20

人教版高二數學教案03-07

關于高二數學教案12-30

高二數學教案15篇12-28

高二數學教案(精選15篇)03-01

職高數學教案高二范文09-28

高二數學教案(15篇)12-28

高二數學教案(集錦15篇)02-27

高二數學教案(通用15篇)02-28

久久综合国产中文字幕,久久免费视频国产版原创视频,欧美日韩亚洲国内综合网香蕉,久久久久久久久久国产精品免费
亚洲国产精品久久久久 | 亚洲色精品一区二区三区四区 | 亚洲一级免费在线免费视频 | 色场视频在线观看88 | 在线观看国产欧美亚洲 | 尹人香蕉综合网在线观看 |