高中數學說課稿

時間:2024-05-21 13:58:52 數學說課稿 我要投稿

高中數學說課稿(精華15篇)

  作為一名老師,通常會被要求編寫說課稿,借助說課稿可以更好地組織教學活動。我們該怎么去寫說課稿呢?下面是小編幫大家整理的高中數學說課稿,僅供參考,希望能夠幫助到大家。

高中數學說課稿(精華15篇)

高中數學說課稿1

  以下是高中數學《等差數列前n項和的公式》說課稿,僅供參考。

  教學目標

  A、知識目標:

  掌握等差數列前n項和公式的推導方法;掌握公式的運用。

  B、能力目標:

  (1)通過公式的探索、發現,在知識發生、發展以及形成過程中培養學生觀察、聯想、歸納、分析、綜合和邏輯推理的能力。

  (2)利用以退求進的思維策略,遵循從特殊到一般的認知規律,讓學生在實踐中通過觀察、嘗試、分析、類比的方法導出等差數列的求和公式,培養學生類比思維能力。

  (3)通過對公式從不同角度、不同側面的剖析,培養學生思維的靈活性,提高學生分析問題和解決問題的能力。

  C、情感目標:(數學文化價值)

  (1)公式的發現反映了普遍性寓于特殊性之中,從而使學生受到辯證唯物主義思想的熏陶。

  (2)通過公式的運用,樹立學生"大眾教學"的思想意識。

  (3)通過生動具體的現實問題,令人著迷的數學史,激發學生探究的興趣和欲望,樹立學生求真的勇氣和自信心,增強學生學好數學的心理體驗,產生熱愛數學的情感。

  教學重點:等差數列前n項和的.公式。

  教學難點:等差數列前n項和的公式的靈活運用。

  教學方法:啟發、討論、引導式。

  教具:現代教育多媒體技術。

  教學過程

  一、創設情景,導入新課。

  師:上幾節,我們已經掌握了等差數列的概念、通項公式及其有關性質,今天要進一步研究等差數列的前n項和公式。提起數列求和,我們自然會想到德國偉大的數學家高斯"神速求和"的故事,小高斯上小學四年級時,一次教師布置了一道數學習題:"把從1到100的自然數加起來,和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計算出來的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀察學生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。

  例1,計算:1+2+3+4+5+6+7+8+9+10.

  這道題除了累加計算以外,還有沒有其他有趣的解法呢?小組討論后,讓學生自行發言解答。

  生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個11,得到55。

  生2:可設S=1+2+3+4+5+6+7+8+9+10,根據加法交換律,又可寫成 S=10+9+8+7+6+5+4+3+2+1。

  上面兩式相加得2S=11+10+......+11=10×11=110

  10個

  所以我們得到S=55,

  即1+2+3+4+5+6+7+8+9+10=55

  師:高斯神速計算出1到100所有自然數的各的方法,和上述兩位同學的方法相類似。

  理由是:1+100=2+99=3+98=......=50+51=101,有50個101,所以1+2+3+......+100=50×101=5050。請同學們想一下,上面的方法用到等差數列的哪一個性質呢?

  生3:數列{an}是等差數列,若m+n=p+q,則am+an=ap+aq.

  二、教授新課(嘗試推導)

  師:如果已知等差數列的首項a1,項數為n,第n項an,根據等差數列的性質,如何來導出它的前n項和Sn計算公式呢?根據上面的例子同學們自己完成推導,并請一位學生板演。

  生4:Sn=a1+a2+......an-1+an也可寫成

  Sn=an+an-1+......a2+a1

  兩式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)

  n個

  =n(a1+an)

  所以Sn=

  #FormatImgID_0#

  (I)

  師:好!如果已知等差數列的首項為a1,公差為d,項數為n,則an=a1+(n-1)d代入公式(1)得

  Sn=na1+

  #FormatImgID_1#

  d(II) 上面(I)、(II)兩個式子稱為等差數列的前n項和公式。公式(I)是基本的,我們可以發現,它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數列的首項a1,下底是第n項an,高是項數n。引導學生總結:這些公式中出現了幾個量?(a1,d,n,an,Sn),它們由哪幾個關系聯系?[an=a1+(n-1)d,Sn=

  #FormatImgID_2#

  =na1+

  #FormatImgID_3#

  d];這些量中有幾個可自由變化?(三個)從而了解到:只要知道其中任意三個就可以求另外兩個了。下面我們舉例說明公式(I)和(II)的一些應用。

  三、公式的應用(通過實例演練,形成技能)。

  1、直接代公式(讓學生迅速熟悉公式,即用基本量觀點認識公式)例2、計算:

  (1)1+2+3+......+n

  (2)1+3+5+......+(2n-1)

  (3)2+4+6+......+2n

  (4)1-2+3-4+5-6+......+(2n-1)-2n

  請同學們先完成(1)-(3),并請一位同學回答。

  生5:直接利用等差數列求和公式(I),得

  (1)1+2+3+......+n=

  #FormatImgID_4#

  (2)1+3+5+......+(2n-1)=

  #FormatImgID_5#

  (3)2+4+6+......+2n=

  #FormatImgID_6#

  =n(n+1)

  師:第(4)小題數列共有幾項?是否為等差數列?能否直接運用Sn公式求解?若不能,那應如何解答?小組討論后,讓學生發言解答。

  生6:(4)中的數列共有2n項,不是等差數列,但把正項和負項分開,可看成兩個等差數列,所以

  原式=[1+3+5+......+(2n-1)]-(2+4+6+......+2n)

  =n2-n(n+1)=-n

  生7:上題雖然不是等差數列,但有一個規律,兩項結合都為-1,故可得另一解法:

  原式=-1-1-......-1=-n

  n個

  師:很好!在解題時我們應仔細觀察,尋找規律,往往會尋找到好的方法。注意在運用Sn公式時,要看清等差數列的項數,否則會引起錯解。

  例3、(1)數列{an}是公差d=-2的等差數列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

  生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

  又∵d=-2,∴a1=6

  ∴S12=12 a1+66×(-2)=-60

  生9:(2)由a1+a2+a3=12,a1+d=4

  a8+a9+a10=75,a1+8d=25

  解得a1=1,d=3 ∴S10=10a1+

  #FormatImgID_7#

  =145

  師:通過上面例題我們掌握了等差數列前n項和的公式。在Sn公式有5個變量。已知三個變量,可利用構造方程或方程組求另外兩個變量(知三求二),請同學們根據例3自己編題,作為本節的課外練習題,以便下節課交流。

  師:(繼續引導學生,將第(2)小題改編)

  ①數列{an}等差數列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

  ②若此題不求a1,d而只求S10時,是否一定非來求得a1,d不可呢?引導學生運用等差數列性質,用整體思想考慮求a1+a10的值。

  2、用整體觀點認識Sn公式。

  例4,在等差數列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發學生解)

  師:來看第(1)小題,寫出的計算公式S16=

  #FormatImgID_8#

  =8(a1+a6)與已知相比較,你發現了什么?

  生10:根據等差數列的性質,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。

  師:對!(簡單小結)這個題目根據已知等式是不能直接求出a1,a16和d的,但由等差數列的性質可求a1與an的和,于是這個問題就得到解決。這是整體思想在解數學問題的體現。

  師:由于時間關系,我們對等差數列前n項和公式Sn的運用一一剖析,引導學生觀察當d≠0時,Sn是n的二次函數,那么從二次(或一次)的函數的觀點如何來認識Sn公式后,這留給同學們課外繼續思考。

  最后請大家課外思考Sn公式(1)的逆命題:

  已知數列{an}的前n項和為Sn,若對于所有自然數n,都有Sn=

  #FormatImgID_9#

  。數列{an}是否為等差數列,并說明理由。

  四、小結與作業。

  師:接下來請同學們一起來小結本節課所講的內容。

  生11:1、用倒序相加法推導等差數列前n項和公式。

  2、用所推導的兩個公式解決有關例題,熟悉對Sn公式的運用。

  生12:1、運用Sn公式要注意此等差數列的項數n的值。

  2、具體用Sn公式時,要根據已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。

  3、當已知條件不足以求此項a1和公差d時,要認真觀察,靈活應用等差數列的有關性質,看能否用整體思想的方法求a1+an的值。

  師:通過以上幾例,說明在解題中靈活應用所學性質,要糾正那種不明理由盲目套用公式的學習方法。同時希望大家在學習中做一個有心人,去發現更多的性質,主動積極地去學習。

  本節所滲透的數學方法;觀察、嘗試、分析、歸納、類比、特定系數等。

  數學思想:類比思想、整體思想、方程思想、函數思想等。

高中數學說課稿2

  一、教材分析:

  1、教材的地位與作用。

  本節內容是在學生學習了“事件的可能性的基礎上來學習如何預測不確定事件(隨機事件)發生的可能性的大小。”用概率預測隨機發生的可能性大小,在日常生活、自然、科技領域有著廣泛的應用,學習本單元知識,無論是今后繼續深造(高中學習概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學生較難理解。

  在教材的處理上,采取小單元教學,本節課安排讓學生了解求隨機事件概率的兩種方法,目的`是讓學生能夠比較系統地理解概率的意義及求概率的方法,為下面學習求比較復雜的情況的概率打下基礎。

  2、重點與難點。

  重點:對概率意義的理解,通過多次重復實驗,用頻率預測概率的方法,以及用列舉法求概率的方法。

  難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發生的總數及總的結果數的分析。

  二、目的分析:

  知識與技能:掌握用頻率預測概率和用列舉法求概率方法。

  過程與方法:組織學生自主探究,合作交流,引導學生觀察試驗和統計的結果,進而進行分析、歸納、總結,了解并感受概率的定義的過程,引導學生從數學的視角觀察客觀世界,用數學的思維思考客觀世界,以數學的語言描述客觀世界。

  情感態度價值觀:學生經歷觀察、分析、歸納、確認等數學活動,感受數學活動充滿了探索性與創造性,感受量變與質變的對立統一規律,同時為概率的精準、新穎、獨特的思維方法所震撼,激發學生學習數學的熱情,增強對數學價值觀的認識。

  三、教法、學法分析:

  引導學生自主探究、合作交流、觀察分析、歸納總結,讓學生經歷知識(概率定義計算公式)的產生和發展過程,讓學生在數學活動中學習數學、掌握數學,并能應用數學解決現實生活中的實際問題,教師是學生學習的組織者、合作者和指導者,精心設計教學情境,有序組織學生活動,讓課堂充滿生機活力,體現“教” 為“學”服務這一宗旨。

  四、教學過程分析:

  1、引導學生探究

  精心設計問題一,學生通過對問題一的探究,一方面復習前面學過的“確定事件和不確定事件”的知識,為學好本節內容理清知識障礙,二是讓學生明確為什么要學習概率(如何預測隨機事件可能性發生大小)。引導學生對問題二的探究與觀察實驗數據,使學生了解概率這一重要概念的實際背景,感受并相信隨機事件的發生中存在著統計規律性,感受數學規律的真實的發現過程。

  2、歸納概括

  學生從試驗中得到的統計數字及概率呈現穩定在某一數值附近這一規律,讓學生明確概率定義的由來。

  引導學生重新對問題一和問題二的探究,分析某事件發生的各種可能性在全部可能發生結果中所占比例,得到用列舉法求概率的公式,引導學生進行理性思維,邏輯分析,既培養學生的分析問題能力,又讓學生明確用列舉法求概率這一簡便快捷方法的合理性。

  P(A)= = = (m

  3、舉例應用

  ⑴引導學生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學生掌握用列舉法求概率的方法。

  ⑵引導學生對練習中的問題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。

  深化發展

  ⑴設置3個小題目,引導學生歸納、分析、總結,加深對知識與方法的理解,并學會靈活運用。

  ⑵讓學生設計活動內容,對知識進行升華和拓展,引導學生創造性地運用知識思考問題和解決問題,從而培養學生的創新意識和創新能力。

高中數學說課稿3

  一、教材分析

  集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。

  本節課主要分為兩個部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關系。

  二、教學目標

  1、學習目標

  (1)通過實例,了解集合的含義,體會元素與集合之間的關系以及理解“屬

  于”關系;

  (2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

  2、能力目標

  (1)能夠把一句話一個事件用集合的方式表示出來。

  (2)準確理解集合與及集合內的元素之間的關系。

  3、情感目標

  通過本節的把實際事件用集合的方式表示出來,從而培養數學敏感性,了 解到數學于生活中。

  三、教學重點與難點

  重點 集合的基本概念與表示方法;

  難點 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的集合;

  四、教學方法

  (1)本課將采用探究式教學,讓學生主動去探索,激發學生的學習興趣。并分層教學,這樣可顧及到全體學生,達到優生得到培養,后進生也有所收獲的效果;

  (2)學生在老師的引導下,通過閱讀教材,自主學習、思考、交流、討論和概括,從而完成本節課的教學目標。

  五、學習方法

  (1)主動學習法:舉出例子,提出問題,讓學生在獲得感性認識的同時,

  教師層層深入,啟發學生積極思維,主動探索知識,培養學生思維想象 的綜合能力。

  (2)反饋補救法:在練習中,注意觀察學生對學習的反饋情況,以實現“培

  優扶差,滿足不同。”

  六、教學思路

  具體的思路如下

  復習的引入:講一些集合的相關數學及相關數學家的經歷故事!這可以讓學生更加了解數學史從何使學生對數學更加感興趣,有助于上課的效率!因為時間關系這里我就不說相關數學史咯。

  一、 引入課題

  軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?

  在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合,即是一些研究對象的總體。

  二、 正體部分

  學生閱讀教材,并思考下列問題:

  (1)集合有那些概念?

  (2)集合有那些符號?

  (3)集合中元素的特性是什么?

  (4)如何給集合分類?

  (一)集合的有關概念

  (1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,

  都可以稱作對象.

  (2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由

  這些對象的全體構成的集合.

  (3)元素:集合中每個對象叫做這個集合的元素.

  集合通常用大寫的拉丁字母表示,如A、B、C、??元素通常用小寫的拉丁字母表示,如a、b、c、??

  1. 思考:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,

  對學生的例子予以討論、點評,進而講解下面的問題。

  2、元素與集合的關系

  (1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A

  (2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作a?A

  要注意“∈”的方向,不能把a∈A顛倒過來寫. (舉例)

  集合A={3,4,6,9}a=2 因此我們知道a?A

  3、集合中元素的特性

  (1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了.

  (2)互異性:集合中的元素一定是不同的.

  (3)無序性:集合中的.元素沒有固定的順序.

  4、集合分類

  根據集合所含元素個屬不同,可把集合分為如下幾類:

  (1)把不含任何元素的集合叫做空集Ф

  (2)含有有限個元素的集合叫做有限集

  (3)含有無窮個元素的集合叫做無限集

  注:應區分?,{?},{0},0等符號的含義

  5、常用數集及其表示方法

  (1)非負整數集(自然數集):全體非負整數的集合.記作N

  (2)正整數集:非負整數集內排除0的集.記作N*或N+

  (3)整數集:全體整數的集合.記作Z

  (4)有理數集:全體有理數的集合.記作Q

  (5)實數集:全體實數的集合.記作R

  注:(1)自然數集包括數0.

  (2)非負整數集內排除0的集.記作N*或N+,Q、Z、R等其它數集內排

  除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z*

  (二)集合的表示方法

  我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

  (1) 列舉法:把集合中的元素一一列舉出來,寫在大括號內。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

  例1.(課本例1)

  思考2,引入描述法

  說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。

  (2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。 具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

  例2.(課本例2)

  說明:(課本P5最后一段)

  思考3:(課本P6思考) 強調:描述法表示集合應注意集合的代表元素

  {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。

  辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。

  說明:列舉法與描述法各有優點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

  (三)課堂練習(課本P6練習)

  三、 歸納小結與作業

  本節課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。

  書面作業:習題1.1,第1- 4題

高中數學說課稿4

  新課標指出,高中數學課程的教學要能提高學生的“四基、四能”,根據這一課程目標,本節課我將從教材分析、教學目標、教學過程等幾個方面來展開我的說課。

  一、說教材

  本節課選自人教A版高中數學必修3第三章。本節課的內容是在古典概型基礎上的進一步發展,是等可能事件的概念從有限向無限的延伸。通過本節課的學習,學生能進一步體會實驗結果的隨機性與規律性,并體會到對事物的看法不應該持絕對化的觀點。

  二、說學情

  高中生智力發育已趨于成熟,對于未知事物有著很強的探究欲望,且此前古典概型的學習為本節課打下了良好的基礎。但基本事件有無數多個的'發現以及此種情況下概率該如何計算,學生并不容易想到。因此我會從具體的生活、實踐問題入手,組織學生開展活動,在觀察、思考中抽象、概括本節課的要點。

  三、說教學目標

  結合以上分析,我制定本節課教學目標如下:

  (一)知識與技能

  初步體會幾何概型的意義,掌握幾何概型的概率計算公式,并能進行簡單應用。

  (二)過程與方法

  在通過幾何概型特點概括出幾何概型概率計算公式的過程中,進一步發展合情推理能力,學會運用數形結合的思想解決概率計算問題。

  (三)情感、態度與價值觀

  通過貼近生活的素材,激發學習數學的興趣,體會用科學的態度、辯證的思想去觀察、分析、研究客觀世界。

  四、說教學重難點

  同時,本節課教學重點為:幾何概型的意義及概率計算公式。教學難點為:幾何概型概率計算公式的推導。

  五、說教法和學法

  教學的一切活動都必須以強調學生的主動性、積極性為出發點,根據這一教學理念,本節課我將采用講授法、自主探究法、練習法等教學方法。

  六、說教學過程

  下面說說我的教學過程。

  (一)引入新課

  首先我會帶領學生復習確定隨機事件發生的概率的兩種方法,一是通過頻率估算概率,二是用古典概型的概率公式來計算事件發生的概率。但古典概型是基于試驗的所有結果是有限個,當試驗的所有可能結果有無窮多個時,無法利用之前的方法進行計算,進而進入本節課的學習。

  利用復習導入,一來可以鞏固之前所學,二來將等可能事件從有限拓展到無限,引發學生的認知沖突,體現出學習本節課的必要性。

  (二)講解新知

  接下來是新知講解。為了讓學生初步感知幾何概型的基本特點,我會舉例:

  (1)一個人到單位的時間可能是8:00~9:00之間任一時刻。

  (2)往一方格中投一個石子。并請學生說說此人到達單位的時間點以及石子落在方格的哪個位置,會不會在某一時間點到達或落在某一位置的概率比較大。學生結合生活經驗能夠發現,此時基本事件有無數多個,且基本事件發生是等可能的。

  僅僅知道特點還是不夠的,還要知道相應概率的求法。為了讓學生有更直觀的感知,我會出示具體問題:如圖,甲、乙兩人玩轉盤游戲,規定當指針指向B區域時,甲獲勝,否則乙獲勝。請學生思考在兩種情況下甲獲勝的概率分別是多少。

高中數學說課稿5

  一、教學目標

  (一)知識與技能

  1、進一步熟練掌握求動點軌跡方程的基本方法。

  2、體會數學實驗的直觀性、有效性,提高幾何畫板的操作能力。

  (二)過程與方法

  1、培養學生觀察能力、抽象概括能力及創新能力。

  2、體會感性到理性、形象到抽象的思維過程。

  3、強化類比、聯想的方法,領會方程、數形結合等思想。

  (三)情感態度價值觀

  1、感受動點軌跡的動態美、和諧美、對稱美

  2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發提出問題和解決問題的勇氣

  二、教學重點與難點

  教學重點:運用類比、聯想的方法探究不同條件下的軌跡

  教學難點:圖形、文字、符號三種語言之間的過渡

  三、、教學方法和手段

  【教學方法】觀察發現、啟發引導、合作探究相結合的教學方法。啟發引導學生積極思考并對學生的思維進行調控,幫助學生優化思維過程,在此基礎上,提供給學生交流的機會,幫助學生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的.數學思維。

  【教學手段】利用網絡教室,四人一機,多媒體教學手段。通過上述教學手段,一方面:再現知識產生的過程,通過多媒體動態演示,突破學生在舊知和新知形成過程中的障礙(靜態到動態);另一方面:節省了時間,提高了課堂教學的效率,激發了學生學習的興趣。

  【教學模式】重點中學實施素質教育的課堂模式“創設情境、激發情感、主動發現、主動發展”。

高中數學說課稿6

  一、教材分析

  函數的單調性是函數的重要性質.從知識的網絡結構上看,函數的單調性既是函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性等內容的基礎,在研究各種具體函數的性質和應用、解決各種問題中都有著廣泛的應用.函數單調性概念的建立過程中蘊涵諸多數學思想方法,對于進一步探索、研究函數的其他性質有很強的啟發與示范作用.

  根據函數單調性在整個教材內容中的地位與作用,本節課教學應實現如下教學目標:

  知識與技能使學生理解函數單調性的概念,初步掌握判別函數單調性的方法;

  過程與方法引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡單的問題;使學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。

  情感態度與價值觀在函數單調性的學習過程中,使學生體驗數學的科學價值和應用價值,培養學生善于觀察、勇于探索的良好習慣和嚴謹的科學態度。

  根據上述教學目標,本節課的教學重點是函數單調性的概念形成和初步運用.雖然高一學生已經有一定的抽象思維能力,但函數單調性概念對他們來說還是比較抽象的。因此,本節課的學習難點是函數單調性的概念形成。

  二、教法學法

  為了實現本節課的教學目標,在教法上我采取了

  1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發學生求知欲,調動學生主體參與的積極性。

  2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念。

  3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹的推理,并順利地完成書面表達。

  在學法上我重視了:

  1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。

  2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和分析解決問題的能力。

  三、教學過程

  函數單調性的概念產生和形成是本節課的難點,為了突破這一難點,在教學設計上采用了下列四個環節。

  (一)創設情境,提出問題

  (問題情境)(播放中央電視臺天氣預報的音樂)。如圖為某地區20xx年元旦這一天24小時內的氣溫變化圖,觀察這張氣溫變化圖:

  [教師活動]引導學生觀察圖象,提出問題:

  問題1:說出氣溫在哪些時段內是逐步升高的或下降的?

  問題2:怎樣用數學語言刻畫上述時段內“隨著時間的增大氣溫逐漸升高”這一特征?

  [設計意圖]問題是數學的心臟,問題是學生思維的開始,問題是學生興趣的開始。這里,通過兩個問題,引發學生的進一步學習的好奇心。

  (二)探究發現建構概念

  [學生活動]對于問題1,學生容易給出答案。問題2對學生來說較為抽象,不易回答。

  [教師活動]為了引導學生解決問題2,先讓學生觀察圖象,通過具體情形,例如,“t1=8時,f(t1)=1,t2=10時,f(t2)=4”這一情形進行描述.引導學生回答:對于自變量8<10,對應的函數值有1<4。舉幾個例子表述一下。然后給出一個鋪墊性的問題:結合圖象,請你用自己的語言,描述“在區間[4,14]上,氣溫隨時間增大而升高”這一特征。

  在學生對于單調增函數的特征有一定直觀認識時,進一步提出:

  問題3:對于任意的t1、t2∈[4,16]時,當t1

  (t1)

  [學生活動]通過觀察圖象、進行實驗(計算機)、正反對比,發現數量關系,由具體到抽象,由模糊到清晰逐步歸納、概括、抽象出單調增函數概念的本質屬性,并嘗試用符號語言進行初步的表述。

  [教師活動]為了獲得單調增函數概念,對于不同學生的表述進行分析、歸類,引導學生得出關鍵詞“區間內”、“任意”、“當時,都有”。告訴他們“把滿足這些條件的函數稱之為單調增函數”,之后由他們集體給出單調增函數概念的數學表述.提出:

  問題4:類比單調增函數概念,你能給出單調減函數的概念嗎?

  最后完成單調性和單調區間概念的整體表述。

  [設計意圖]數學概念的形成來自解決實際問題和數學自身發展的需要。但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經驗和已有的知識基礎出發,經歷“數學化”、“再創造”的活動過程。剛升入高一的學生已經具備了一定的幾何形象思維能力,但抽象思維能力不強。從日常的描述性語言概念升華到用數學符號語言精確刻畫概念是本節課的難點。

  (三)自我嘗試運用概念

  1.為了理解函數單調性的概念,及時地進行運用是十分必要的。

  [教師活動]問題5:(1)你能找出氣溫圖中的單調區間嗎?(2)你能說出你學過的函數的單調區間嗎?請舉例說明。

  [學生活動]對于(1),學生容易看出:氣溫圖中分別有兩個單調減區間和一個單調增區間.對于(2),學生容易舉出具體函數如:f(x)=—2x+2,f(x)=x2+2x—3,f(x)=1/x,并畫出函數的草圖,根據函數的圖象說出函數的單調區間。

  [教師活動]利用實物投影儀,投影出學生畫出的草圖和標出的單調區間,并指出學生回答問題時可能出現的錯誤,如:在敘述函數的單調區間時寫成并集。

  [設計意圖]在學生已有認知結構的基礎上提出新問題,使學生明了,過去所研究的函數的相關特征,就是現在所學的函數的單調性,從而加深對函數單調性概念的理解。

  2.對于給定圖象的函數,借助于圖象,我們可以直觀地判定函數的單調性,也能找到單調區間.而對于一般的函數,我們怎樣去判定函數的單調性呢?

  [教師活動]問題6:證明在區間(0,+∞)上是單調減函數。

  [學生活動]學生相互討論,嘗試自主進行函數單調性的證明,可能會出現不知如何比較f(x1)與f(x2)的大小、不會正確表述、變形不到位或根本不會變形等困難。

  [教師活動]教師深入學生中,與學生交流,了解學生思考問題的進展過程,投影學生的.證明過程,糾正出現的錯誤,規范書寫的格式。

  [學生活動]學生自我歸納證明函數單調性的一般方法和操作流程:取值作差變形定號判斷。

  [設計意圖]有效的數學學習過程,不能單純的模仿與記憶,數學思想的領悟和學習過程更是如此.利用學生自己提出的問題,讓學生在解題過程中親身經歷和實踐體驗,師生互動學習,生生合作交流,共同探究。

  (四)回顧反思深化概念

  [教師活動]給出一組題:

  1、定義在R上的單調函數f(x)滿足f(2)>f(1),那么函數f(x)是R上的單調增函數還是單調減函數?

  2、若定義在R上的單調減函數f(x)滿足f(1+a)

  [學生活動]學生互相討論,探求問題的解答和問題的解決過程,并通過問題,歸納總結本節課的內容和方法。

  [設計意圖]通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對函數單調性認識的再次深化。

  [教師活動]作業布置:

  (1)閱讀課本P34-35例2

  (2)書面作業:

  必做:教材P431、7、11

  選做:二次函數y=x2+bx+c在[0,+∞)是增函數,滿足條件的實數的值唯一嗎?

  探究:函數y=x在定義域內是增函數,函數有兩個單調減區間,由這兩個基本函數構成的函數的單調性如何?請證明你得到的結論。

  [設計意圖]通過兩方面的作業,使學生養成先看書,后做作業的習慣。基于函數單調性內容的特點及學生實際,對課后書面作業實施分層設置,安排基本練習題、鞏固理解題和深化探究題三層。學生完成作業的形式為必做、選做和探究三種,使學生在完成必修教材基本學習任務的同時,拓展自主發展的空間,讓每一個學生都得到符合自身實踐的感悟,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展、合作探究的學習氛圍的形成。

  四、教學評價

  學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。教師應當高度重視學生學習過程中的參與度、自信心、團隊精神、合作意識、獨立思考習慣的養成、數學發現的能力,以及學習的興趣和成就感。學生熟悉的問題情境可以激發學生的學習興趣,問題串的設計可以讓更多的學生主動參與,師生對話可以實現師生合作,適度的研討可以促進生生交流,以及團隊精神,知識的生成和問題的解決可以讓學生感受到成功的喜悅,縝密的思考可以培養學生獨立思考的習慣。讓學生在教師評價、學生評價以及自我評價的過程中體驗知識的積累、探索能力的長進和思維品質的提高,為學生的可持續發展打下基礎。

高中數學說課稿7

  今天我說課的題目是《函數的單調性》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、教學過程五方面逐一加以分析和說明。

  一、說教材

  1、教材的地位和作用

  本節內容選自北師大版高中數學必修1,第二章第3節。函數是高中數學的課程,它是描述事物運動變化的模型,而函數的單調性是函數的一大特征,它為我們之后的學習奠定重要基礎。

  2、學情分析

  本節課的學生是高一學生,他們在初中階段,通過一次函數、二次函數、反比例函數的學習已經對函數的增減性有了初步的感性認識。在高中階段,用符號語言刻畫圖形語言,用定量分析解釋定性結果,有利于培養學生的理性思維,為后續函數的學習作準備,也為利用倒數研究單調性的相關知識奠定了基礎。

  教學目標分析

  基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分:

  1、知識與技能(1)理解函數的單調性和單調函數的意義;

  (2)會判斷和證明簡單函數的單調性。

  2、過程與方法

  (1)培養從概念出發,進一步研究性質的意識及能力;

  (2)體會數形結合、分類討論的數學思想。

  3、情感態度與價值觀

  由合適的例子引發學生探求數學知識的欲望,突出學生的主觀能動性,激發學生學習數學的興趣。

  三、教學重難點分析

  通過以上對教材和學生的分析以及教學目標,我將本節課的重難點

  重點:

  函數單調性的概念,判斷和證明簡單函數的單調性。

  難點:

  1、函數單調性概念的認知

  (1)自然語言到符號語言的轉化;

  (2)常量到變量的轉化。

  2、應用定義證明單調性的代數推理論證。

  四、教法與學法分析

  1、教法分析

  基于以上對教材、學情的分析以及新課標的教學理念,本節課我采用啟發式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數學在生活中的應用,啟發式教學和討論法發散學生思維,培養學生善于思考的能力。

  2、學法分析

  新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎。所以本節課我將引導學生通過合作交流、自主探索的方法理解函數的單調性及特征。

  五、教學過程

  為了更好的實現本課的三維目標,并突破重難點,我設計以下五個環節來進行我的教學。

  (一)知識導入

  溫故而知新,我將先從之前學習的知識引入,給出一些函數,比如y=x、y=-x、y=|x|,讓學生作出這些函數的圖像,然后讓學生討論這些函數圖像是上升的還是下降的,由此引入到我的`新課。在這個過程中不僅可以檢查學生掌握基本初等函數圖像的情況,而且符合學生的認知結構,通過學生自主探究,從知識產生、發展的過程中構建新概念,有利于激發學生的思維和學習的積極主動性。

  (二)講授新課

  1.問題:分別做出函數y=x2,y=x+2的圖像,指出上面的函數圖象在哪個區間是上升的,在哪個區間是下降的?

  通過學生熟悉的圖像,及時引導學生觀察,函數圖像上A點的運動情況,引導學生能用自然語言描述出,隨著x增大時圖像變化規律。讓學生大膽的去說,老師逐步修正、完善學生的說法,最后給出正確答案。

  2、觀察函數y=x2隨自變量x變化的情況,設置啟發式問題:

  (1)在y軸的右側部分圖象具有什么特點?

  (2)如果在y軸右側部分取兩個點(x1,y1),(x2,y2),當x1< p="">

  (3)如何用數學符號語言來描述這個規律?

  教師補充:這時我們就說函數y=x2在(0,+∞)上是增函數。

  (4)反過來,如果y=f(x)在(0,+∞)上是增函數,我們能不能得到自變量與函數值的變化規律呢?

  類似地分析圖象在y軸的左側部分。

  通過對以上問題的分析,從正、反兩方面領會函數單調性。師生共同總結出單調增函數的定義,并解讀定義中的關鍵詞,如:區間內,任意,當x1< p="">

  仿照單調增函數定義,由學生說出單調減函數的定義。

  教師總結歸納單調性和單調區間的定義。注意強調:函數的單調性是函數在定義域某個區間上的局部性質,也就是說,一個函數在不同的區間上可以有不同的單調性。

  (我將給出函數y=x2,并畫出這個函數的圖像,讓學生觀察函數圖像的特點,讓他們描述函數圖像的增減性,慢慢得到函數單調性的概念。在這個過程中,學生把對圖像的感性認識轉化為了數學關系,這種從特殊到一般的學習過程有利于學生對概念的理解)

  (三)鞏固練習

  1練習1:說出函數f(x)=的單調區間,并指明在該區間上的單調性。x

  練習2:練習2:判斷下列說法是否正確

  ①定義在R上的函數f(x)滿足f(2)>f(1),則函數是R上的增函數。

  ②定義在R上的函數f(x)滿足f(2)>f(1),則函數是R上不是減函數。

  1③已知函數y=,因為f(-1)< p="">

  1我將給出一些具體的函數,如y=,f(x)=3x+2讓學生說出函數的單調區間,并指明在該區間x

  上的單調性。通過這種練習的方式,幫助學生鞏固對知識的掌握。

  (四)歸納總結

  我先讓學生進行小結,函數單調性定義,判斷函數單調性的方法(圖像、定義),然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,為下一節課的教學過程做好準備。

  (五)布置作業

  必做題:習題2-3A組第2,4,5題。

  選做題:習題2-3B組第2題。

  新課程理念告訴我們,不同的人在數學上可以獲得不同的發展,因此要設計不同程度要求的習題。

高中數學說課稿8

  說課:古典概型

  麻城理工學校謝衛華

  (一)教材地位及作用:本節課是高中數學(必修

  3)第三章概率的第二節古典概型的第一課時,是在

  隨機事件的概率之后,幾何概型之前,尚未學習排列組合的情況下教學的。古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。學好古典概型可以為其它概率的學習奠定基礎,同時有利于理解概率的概念,有利于計算一些事件的概率,有利于解釋生活中的一些問題。

  根據本節課的地位和作用以及新課程標準的具體要求,制訂教學重點:理解古典概型的概念及利用古典概型求解隨機事件的概率;

  根據本節課的內容,即尚未學習排列組合,以及學生的心理特點和認知水平,制定了教學難點:如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數和試驗中基本事件的總數。

  (二)根據新課程標準,并結合學生心理發展的需求,以及人格、情感、價值觀的具體要求制訂教學目標:

  1.知識與技能

  (1)理解古典概型及其概率計算公式(2)會用列舉法計算一些隨機事件所含的基本事件數及事件發生的概率2.情感態度與價值觀

  概率教學的核心問題是讓學生了解隨機現象與概率的意義,加強與實際生活的聯系,以科學的態度評價身邊的一些隨機現象。適當地增加學生合作學習交流的機會,盡量地讓學生自己舉出生活和學習中與古典概型有關的實例。使得學生在體會概率意義的同時,感受與他人合作的重要性以及初步形成實事求是地科學態度和鍥而不舍的求學精神

  (三)教學方法:根據本節課的內容和學生的實際水平,通過模擬試驗讓學生理解古典概型的特征,觀

  察類比各個試驗,歸納總結出古典概型的概率計算公式,體現了化歸的重要思想,掌握列舉法,學會運用數形結合、分類討論的思想解決概率的計算問題。

  (四)教學過程:

  一、提出問題引入新課:在課前,教師布置任務,以數學小組為單位,完成下面兩個模擬試驗:試驗一:拋擲一枚質地均勻的硬幣,分別記錄“正面朝上”和“反面朝上”的次數,要求每個數學小組至少完成20次(最好是整十數),最后由科代表匯總;

  試驗二:拋擲一枚質地均勻的骰子,分別記錄“1點”、“2點”、“3點”、“4點”、“5點”和“6點”的次數,要求每個數學小組至少完成60次(最好是整十數),最后由科代表匯總。

  教師最后匯總方法、結果和感受,并提出問題:1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?2.根據以前的學習,上述兩個模擬試驗的每個結果之間都有什么特點?

  二、思考交流形成概念:學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關特點加以說明,加深新概念的理解。我們把上述試驗中的隨機事件稱為基本事件,它是試驗的每一個可能結果。

  基本事件有如下的兩個特點:(1)任何兩個基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。給出例題1,讓學生自行解決,從而進一步理解基本事件,然后讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結得到的結論,(1)試驗中所有可能出現的基本事件只有有限個(有限性);(2)每個基本事件出現的可能性相等(等可能性)。我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱

  古典概型。

  三、觀察分析推導公式:教師提出問題:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率

  結果,發現其中的聯系。實驗一中,出現正面朝上的概率與反面朝上的概率相等,即

  1“出現正面朝上”所包含的基本事件的個數,試驗二中,出現各個點的概率相等,即

  P(“出現正面朝上”)==

  2基本事件的總數3“出現偶數點”所包含的`基本事件的個數,根據上述兩則模擬試驗,可以概括總結出,古典

  P(“出現偶數點”)==

  6基本事件的總數

  概型計算任何事件的

  的理解,教師提問:在使用古典概型的概率公式時,應該注意什么?學生回答,教師歸納:應該注意,(1)要判斷該概率模型是不是古典概型;

  (2)要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。

  四、例題分析推廣應用:通過例題2及3,鞏固學生對已學知識的掌握,提高學生分析問題、解決問題的能力。讓學生明確決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。適時利用列表數形結合和分類討論等思想方法,既能形象直觀地列出基本事件的總數,又能做到列舉的不重不漏。

  五、總結概括加深理解:學生小結歸納,不足的地方老師補充說明。使學生對本節課的知識有一個系統全面的認識,并把學過的相關知識有機地串聯起來,便于記憶和應用,也進一步升華了這節課所要表達的本質思想,讓學生的認知更上一層。

  (五)布置作業P123練習1、2題(六)板書設計

  3.2.13.2.1古典概型古典概型試驗一試驗二基本事件

  古典概型概率

  計算公式

  例3列表

  例1樹狀圖古典概型

  例2

  以上是我對《古典概型概型》這節課的理解和處理方法,歡迎各位專家朋友批評指正,謝謝!

  說課教案:古典概型

  麻城理工學校謝衛華

高中數學說課稿9

  一、說教材

  (1)說教材的內容和地位

  本次說課的內容是人教版高一數學必修一第一單元第一節《集合》(第一課時)。集合這一課里,首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握以及使用數學語言的基礎。從知識結構上來說是為了引入函數的定義。因此在高中數學的模塊中,集合就顯得格外的舉足輕重了。

  (2)說教學目標

  根據教材結構和內容以及教材地位和作用,考慮到學生已有的認知結構與心理特征,依據新課標制定如下教學目標:

  1.知識與技能:掌握集合的基本概念及表示方法。了解"屬于"關系的意義,掌握集合元素的特征。

  2.過程與方法:通過情景設置提出問題,揭示課題,培養學生主動探究新知的習慣。并通過"自主、合作與探究"實現"一切以學生為中心"的理念。

  3.情感態度與價值觀:感受數學的人文價值,提高學生的學習數學的興趣,由集合的學習感受數學的簡潔美與和諧統一美。同時通過自主探究領略獲取新知識的喜悅。

  (3)說教學重點和難點

  依據課程標準和學生實際,我確定本課的教學重點為

  教學重點:集合的基本概念及元素特征。

  教學難點:掌握集合元素的三個特征,體會元素與集合的屬于關系。

  二、說教法和學法

  接下來則是說教法、學法

  教法與學法是互相聯系和統一的,不能孤立去研究。什么樣的教法必帶來相應的學法,以遵循啟發性原則為出發點,就本節課而言,我采用"生活實例與數學實例"相結合,"師生互動與課堂布白"相輔助的.方法。通過不同層次的練習體驗,憑借有趣、實用的教學手段,突出重點,突破難點。然而,學生是學習的主人,以學生為主體,創造條件讓學生參與探究活動,()不僅提高了學生探究能力,更讓學生獲得學習的技能和激發學生的學習興趣。因此,本次活動采用的學法有自主探究、觀察發現、合作交流、歸納總結等。

  總之,不管采取什么教法和學法,每節課都應不斷研究學生的學習心理機制,不斷優化教師本身的教學行為,自始至終以學生為主體,為學生創造和諧的課堂氛圍。

  三、說教學過程

  接著我來說一下最重要的部分,本節課的教學過程:

  這節課的流程主要分為六個環節:創設情境(引入目標)、自主探究(感知目標)、討論辨析(理解目標)、變式訓練(鞏固目標)、課堂小結(自我評價)、作業布置(反饋矯正)。上述六個環節由淺入深,層層遞進。 多層次、多角度地加深對概念的理解。 提高學生學習的興趣,以達到良好的教學效果。

  第一環節:創設問題情境,引入目標

  課堂開始我將提出兩個問題:

  問題1:班級有20名男生,16名女生,問班級一共多少人?

  問題2:某次運動會上,班級有20人參加田賽,16人參加徑賽,問一共多少人參加比賽?

  這里我會讓學生以小組討論的形式進行討論問題,事實上小組合作的形式是本節課主要形式。

  待學生討論完畢以后我將作歸納總結:問題2已無法用學過的知識加以解釋,這是與集合有關的問題,因此需用集合的語言加以描述(同時我將板書標題:集合)。

  安排這一過程的意圖是為了從實際問題引入,讓學生了解數學來源于實際。從而激發學生參與課堂學習的欲望。

  很自然地進入到第二環節:自主探究

  讓學生閱讀教材,并思考下列問題:

  (1)有那些概念?

  (2)有那些符號?

  (3)集合中元素的特性是什么?

  安排這一過程的意圖是給學生提供活動空間,讓主體主動建構自己的知識結構。培養學生的探究能力。

  讓學生自主探究之后將進入第三環節:討論辨析

  小組合作探究(1)

  讓學生觀察下列實例

  (1)1~20以內的所有質數;

  (2)所有的正方形;

  (3)到直線 的距離等于定長 的所有的點;

  (4)方程 的所有實數根;

  通過以上實例,辨析概念:

  (1)集合含義:一般地,某些指定的對象集在一起就成為一個集合,也簡稱集。而集合中的每個對象叫做這個集合的元素。

  (2)表示方法:集合通常用大括號{ }或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。

  小組合作探究(2)——集合元素的特征

  問題3:任意一組對象是否都能組成一個集合?集合中的元素有什么特征?

  問題4:某單位所有的"帥哥"能否構成一個集合?由此說明什么?

  集合中的元素必須是確定的

  問題5:在一個給定的集合中能否有相同的元素?由此說明什么?

  集合中的元素是不重復出現的

  問題6:咱班的全體同學組成一個集合,調整座位后這個集合有沒有變化?由此說明什么? 集合中的元素是沒有順序的

  我如此設計的意圖是因為:問題是數學的心臟,感受問題是學習數學的根本動力。

  小組合作探究(3)——元素與集合的關系

  問題7:設集合A表示"1~20以內的所有質數",那么3,4,5,6這四個元素哪些在集合A中?哪些不在集合A中?

  問題8:如果元素a是集合A中的元素,我們如何用數學化的語言表達?

  a屬于集合A,記作a∈A

  問題9:如果元素a不是集合A中的元素,我們如何用數學化的語言表達?

  a不屬于集合A,記作aA

  小組合作探究(4)——常用數集及其表示方法

  問題10:自然數集,正整數集,整數集,有理數集,實數集等一些常用數集,分別用什么符號表示?

  自然數集(非負整數集):記作 N

  正整數集:

  整數集:記作 Z

  有理數集:記作 Q 實數集:記作 R

  設計意圖:由于不同的人對同一問題有不同的體驗和理解。讓學生通過合作交流相互得到啟發,從而不斷完善自己的知識結構。

  第四環節:理論遷移 變式訓練

  1.下列指定的對象,能構成一個集合的是

  ① 很小的數

  ② 不超過30的非負實數

  ③ 直角坐標平面內橫坐標與縱坐標相等的點

  ④ π的近似值

  ⑤ 所有無理數

  A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④

  第五環節:課堂小結,自我評價

  1.這節課學習的主要內容是什么?

  2.這節課主要解釋了什么數學思想?

  設計意圖:引導學生對所學知識、思想方法進行小結,形成知識系統。教師用激勵性的語言加一點評,讓學生的思想敞亮的發揮出來。

  第六環節:作業布置,反饋矯正

  1.必做題 課本習題1.1—1、2、3.

  2.選做題 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實數a 的值。

  設計意圖:充分考慮到學生的差異性,讓所有學生都有成功的情感體驗。

  四、板書設計

  好的板書就像一份微型教案,為了讓學生直觀易懂的看筆記,板書應設計得有條理性、概括性、指導性,所以我設計的板書如下:

  集 合

  1.集合的概念

  2.集合元素的特征

  (學生板演)

  3.常見集合的表示

  4.范例研究

高中數學說課稿10

  一、教材分析

  1.從在教材中的地位與作用來看

  《等比數列的前n項和》是數列這一章中的一個重要內容,它不僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數學素養.

  2.從學生認知角度看

  從學生的思維特點看,很容易把本節內容與等差數列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導.不利因素是:本節公式的推導與等差數列前n項和公式的推導有著本質的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯.

  3.學情分析

  教學對象是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹.

  4.重點、難點

  教學重點:公式的推導、公式的特點和公式的運用.

  教學難點:公式的推導方法和公式的靈活運用.

  公式推導所使用的“錯位相減法”是高中數學數列求和方法中最常用的方法之一,它蘊含了重要的數學思想,所以既是重點也是難點.

  二、目標分析

  知識與技能目標:

  理解并掌握等比數列前n項和公式的推導過程、公式的特點,在此基礎

  上能初步應用公式解決與之有關的問題.

  過程與方法目標:

  通過對公式推導方法的探索與發現,向學生滲透特殊到一般、類比與轉

  化、分類討論等數學思想,培養學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.

  情感與態度價值觀:

  通過對公式推導方法的探索與發現,優化學生的思維品質,滲透事物之

  間等價轉化和理論聯系實際的辯證唯物主義觀點.

  三、過程分析

  學生是認知的主體,設計教學過程必須遵循學生的認知規律,盡可能地讓學生去經歷知識的形成與發展過程,結合本節課的特點,我設計了如下的教學過程:

  1.創設情境,提出問題

  在古印度,有個名叫西薩的人,發明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求.西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國王令宮廷數學家計算,結果出來后,國王大吃一驚.為什么呢?

  設計意圖:設計這個情境目的是在引入課題的同時激發學生的興趣,調動學習的積極性.故事內容緊扣本節課的主題與重點.

  此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導學生寫出麥粒總數.帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和.這時我對他們的這種思路給予肯定.

  設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學關鍵處學生難以轉過彎來,因而在教學中應舍得花時間營造知識形成過程的氛圍,突破學生學習的'障礙.同時,形成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆.

  2.師生互動,探究問題

  在肯定他們的思路后,我接著問:1,2,22,…,263是什么數列?有何特征?應歸結為什么數學問題呢?

  探討1:,記為(1)式,注意觀察每一項的特征,有何聯系?(學生會發現,后一項都是前一項的2倍)

  探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發現?

  設計意圖:留出時間讓學生充分地比較,等比數列前n項和的公式推導關鍵是變“加”為“減”,在教師看來這是“天經地義”的,但在學生看來卻是“不可思議”的,因此教學中應著力在這兒做文章,從而抓住培養學生的辯證思維能力的良好契機.

  經過比較、研究,學生發現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:.老師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

  設計意圖:經過繁難的計算之苦后,突然發現上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數學的興趣和學好數學的信心.

  3.類比聯想,解決問題

  這時我再順勢引導學生將結論一般化,

  這里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導.

  設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感.

  對不對?這里的q能不能等于1?等比數列中的公比能不能為

  1q=1時是什么數列?此時sn=?(這里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎.)

  再次追問:結合等比數列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導學生得出公式的另一形式)

  設計意圖:通過反問精講,一方面使學生加深對知識的認識,完善知識結構,另一方面使學生由簡單地模仿和接受,變為對知識的主動認識,從而進一步提高分析、類比和綜合的能力.這一環節非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用.

  4.討論交流,延伸拓展

高中數學說課稿11

  高三第一階段復習,也稱“知識篇”。在這一階段,學生重溫高一、高二所學課程,全面復習鞏固各個知識點,熟練掌握基本方法和技能;然后站在全局的高度,對學過的知識產生全新認識。在高一、高二時,是以知識點為主線索,依次傳授講解的,由于后面的相關知識還沒有學到,不能進行縱向聯系,所以,學的知識往往是零碎和散亂,而在第一輪復習時,以章節為單位,將那些零碎的、散亂的知識點串聯起來,并將他們系統化、綜合化,把各個知識點融會貫通。對于普通高中的學生,第一輪復習更為重要,我們希望能做高考試題中一些基礎題目,必須側重基礎,加強復習的針對性,講求實效。

  一、內容分析說明

  1、本小節內容是初中學習的多項式乘法的繼續,它所研究的二項式的乘方的展開式,與數學的其他部分有密切的聯系:

  (1)二項展開式與多項式乘法有聯系,本小節復習可對多項式的變形起到復習深化作用。

  (2)二項式定理與概率理論中的二項分布有內在聯系,利用二項式定理可得到一些組合數的恒等式,因此,本小節復習可加深知識間縱橫聯系,形成知識網絡。

  (3)二項式定理是解決某些整除性、近似計算等問題的一種方法。

  2、高考中二項式定理的試題幾乎年年有,多數試題的難度與課本習題相當,是容易題和中等難度的

  試題,考察的題型穩定,通常以選擇題或填空題出現,有時也與應用題結合在一起求某些數、式的

  近似值。

  二、學校情況與學生分析

  (1)我校是一所鎮普通高中,學生的基礎不好,記憶力較差,反應速度慢,普遍感到數學難學。但大部分學生想考大學,主觀上有學好數學的愿望。

  (2)授課班是政治、地理班,學生聽課積極性不高,聽課率低(60﹪),注意力不能持久,不能連續從事某項數學活動。課堂上喜歡輕松詼諧的氣氛,大部分能機械的模仿,部分學生好記筆記。

  三、教學目標

  復習課二項式定理計劃安排兩個課時,本課是第一課時,主要復習二項展開式和通項。根據歷年高考對這部分的考查情況,結合學生的特點,設定如下教學目標:

  1、知識目標:(1)理解并掌握二項式定理,從項數、指數、系數、通項幾個特征熟記它的展開式。

  (2)會運用展開式的通項公式求展開式的特定項。

  2、能力目標:(1)教給學生怎樣記憶數學公式,如何提高記憶的持久性和準確性,從而優化記憶品質。記憶力是一般數學能力,是其它能力的基礎。

  (2)樹立由一般到特殊的解決問題的意識,了解解決問題時運用的數學思想方法。

  3、情感目標:通過對二項式定理的復習,使學生感覺到能掌握數學的部分內容,樹立學好數學的信心。有意識地讓學生演練一些歷年高考試題,使學生體驗到成功,在明年的高考中,他們也能得分。

  四、教學過程

  1、知識歸納

  (1)創設情景:

  ①同學們,還記得嗎? 、 展開式是什么?

  ②學生一起回憶、老師板書。

  設計意圖:

  ①提出比較容易的問題,吸引學生的注意力,組織教學。

  ②為學生能回憶起二項式定理作鋪墊:激活記憶,引起聯想。

  (2)二項式定理:①設問 展開式是什么?待學生思考后,老師板書

  = C an+C an-1b1+…+C an-rbr+…+C bn(n∈N__)

  ②老師要求學生說出二項展開式的特征并熟記公式:共有 項;各項里a的指數從n起依次減小1,直到0為止;b的指數從0起依次增加1,直到n為止。每一項里a、b的指數和均為n。

  ③鞏固練習 填空

  設計意圖:

  ①教給學生記憶的方法,比較分析公式的特點,記規律。

  ②變用公式,熟悉公式。

  (3) 展開式中各項的系數C , C , C ,… , 稱為二項式系數.

  展開式的通項公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展開式中第r+1項.

  2、例題講解

  例1求 的展開式的第4項的二項式系數,并求的第4項的系數。

  講解過程

  設問:這里 ,要求的第4項的有關系數,如何解決?

  學生思考計算,回答問題;

  老師指明

  ①當項數是4時, ,此時 ,所以第4項的二項式系數是 ,②第4項的系數與的第4項的二項式系數區別。

  板書

  解:展開式的第4項

  所以第4項的系數為 ,二項式系數為 。

  選題意圖:

  ①利用通項公式求項的系數和二項式系數;

  ②復習指數冪運算。

  例2 求 的展開式中不含的 項。

  講解過程

  設問:

  ①不含的 項是什么樣的項?即這一項具有什么性質?

  ②問題轉化為第幾項是常數項,誰能看出哪一項是常數項?

  師生討論 “看不出哪一項是常數項,怎么辦?”

  共同探討思路:利用通項公式,列出項數的方程,求出項數。

  老師總結思路:先設第 項為不含 的項,得 ,利用這一項的指數是零,得到關于 的方程,解出 后,代回通項公式,便可得到常數項。

  板書

  解:設展開式的第 項為不含 項,那么

  令 ,解得 ,所以展開式的第9項是不含的 項。

  因此 。

  選題意圖:

  ①鞏固運用展開式的通項公式求展開式的特定項,形成基本技能。

  ②判斷第幾項是常數項運用方程的思想;找到這一項的項數后,實現了轉化,體現轉化的數學思想。

  例3求 的展開式中, 的系數。

  解題思路:原式局部展開后,利用加法原理,可得到展開式中的 系數。

  板書

  解:由于 ,則 的展開式中 的系數為 的展開式中 的系數之和。

  而 的展開式含 的項分別是第5項、第4項和第3項,則 的`展開式中 的系數分別是: 。

  所以 的展開式中 的系數為

  例4 如果在( + )n的展開式中,前三項系數成等差數列,求展開式中的有理項.

  解:展開式中前三項的系數分別為1, , ,由題意得2× =1+ ,得n=8.

  設第r+1項為有理項,T =C · ·x ,則r是4的倍數,所以r=0,4,8.

  有理項為T1=x4,T5= x,T9= .

  3、課堂練習

  1.(20__年江蘇,7)(2x+ )4的展開式中x3的系數是

  A.6B.12 C.24 D.48

  解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系數為C ·22=24.

  答案:C

  2.(20__年全國Ⅰ,5)(2x3- )7的展開式中常數項是

  A.14 B.14 C.42 D.-42

  解析:設(2x3- )7的展開式中的第r+1項是T =C (2x3) (- )r=C 2 ·

  (-1)r·x ,當- +3(7-r)=0,即r=6時,它為常數項,∴C (-1)6·21=14.

  答案:A

  3.(20__年湖北,文14)已知(x +x )n的展開式中各項系數的和是128,則展開式中x5的系數是_____________.(以數字作答)

  解析:∵(x +x )n的展開式中各項系數和為128,∴令x=1,即得所有項系數和為2n=128.

  ∴n=7.設該二項展開式中的r+1項為T =C (x ) ·(x )r=C ·x ,令 =5即r=3時,x5項的系數為C =35.

  答案:35

  五、課堂教學設計說明

  1、這是一堂復習課,通過對例題的研究、討論,鞏固二項式定理通項公式,加深對項的系數、項的二項式系數等有關概念的理解和認識,形成求二項式展開式某些指定項的基本技能,同時,要培養學生的運算能力,邏輯思維能力,強化方程的思想和轉化的思想。

  2、在例題的選配上,我設計了一定梯度。第一層次是給出二項式,求指定的項,即項數已知,只需直接代入通項公式即可(例1);第二層次(例2)則需要自己創造代入的條件,先判斷哪一項為所求,即先求項數,利用通項公式中指數的關系求出,此后轉化為第一層次的問題。第三層次突出數學思想的滲透,例3需要變形才能求某一項的系數,恒等變形是實現轉化的手段。在求每個局部展開式的某項系數時,又有分類討論思想的指導。而例4的設計是想增加題目的綜合性,求的n過程中,運用等差數列、組合數n等知識,求出后,有化歸為前面的問題。

  六、個人見解

高中數學說課稿12

各位專家:

  您好!我叫陸威,來自江蘇省宿遷中學,今天我說課的課題是“橢圓的標準方程”,下面我從教材分析、教法設計、學法設計、學情分析、教學程序、板書設計和評價設計等七個方面向各位闡述我對本節課的構思與設計。

  一、教材分析

1、地位及作用

  圓錐曲線是一個重要的幾何模型,有許多幾何性質,這些性質在日常生活、生產和科學技術中有著廣泛的應用。同時,圓錐曲線也是體現數形結合思想的重要素材。

  推導橢圓的標準方程的方法對雙曲線、拋物線方程的推導具有直接的類比作用,為學習雙曲線、拋物線內容提供了基本模式和理論基礎。因此本節課具有承前啟后的作用,是本章的重點內容。

  2、教學內容與教材處理

  橢圓的標準方程共兩課時,第一課時所研究的是橢圓標準方程的建立及其簡單運用,涉及的數學方法有觀察、比較、歸納、猜想、推理驗證等,我將以課堂教學的組織者、引導者、合作者的身份,組織學生動手實驗、歸納猜想、推理驗證,引導學生逐個突破難點,自主完成問題,使學生通過各種數學活動,掌握各種數學基本技能,初步學會從數學角度去觀察事物和思考問題,產生學習數學的愿望和興趣。

  3、教學目標

  根據教學大綱和學生已有的認知基礎,我將本節課的教學目標確定如下:

  1、知識目標

  ①建立直角坐標系,根據橢圓的定義建立橢圓的標準方程,

  ②能根據已知條件求橢圓的標準方程,

  ③進一步感受曲線方程的概念,了解建立曲線方程的基本方法,體會數形結合的數學思想。

  2、能力目標

  ①讓學生感知數學知識與實際生活的密切聯系,培養解決實際問題的能力,

  ②培養學生的觀察能力、歸納能力、探索發現能力,

  ③提高運用坐標法解決幾何問題的能力及運算能力。

  3、情感目標

  ①親身經歷橢圓標準方程的獲得過程,感受數學美的熏陶,

  ②通過主動探索,合作交流,感受探索的樂趣和成功的體驗,體會數學的理性和嚴謹,

  ③養成實事求是的科學態度和鍥而不舍的鉆研精神,形成學習數學知識的積極態度。

  4、重點難點

  基于以上分析,我將本課的教學重點、難點確定為:

  ①重點:感受建立曲線方程的基本過程,掌握橢圓的`標準方程及其推導方法,

  ②難點:橢圓的標準方程的推導。

  二、教法設計

  在教法上,主要采用探究性教學法和啟發式教學法。以啟發、引導為主,采用設疑的形式,逐步讓學生進行探究性的學習。探究性學習就是充分利用了青少年學生富有創造性和好奇心,敢想敢為,對新事物具有濃厚的興趣的特點。讓學生根據教學目標的要求和題目中的已知條件,自覺主動地創造性地去分析問題、討論問題、解決問題。

  三、學法設計

  通過創設情境,充分調動學生已有的學習經驗,讓學生經歷“觀察——猜想——證明——應用”的過程,發現新的知識,把學生的潛意識狀態的好奇心變為自覺求知的創新意識。又通過實際操作,使剛產生的數學知識得到完善,提高了學生動手動腦的能力和增強了研究探索的綜合素質。

  四、學情分析

  1、能力分析

  ①學生已初步掌握用坐標法研究直線和圓的方程,

  ②對含有兩個根式方程的化簡能力薄弱。

  2、認知分析

  ①學生已初步熟悉求曲線方程的基本步驟,

  ②學生已經掌握直線和圓的方程及圓錐曲線的概念,對曲線的方程的概念有一定的了解,

  ③學生已經初步掌握研究直線和圓的基本方法。

  3、情感分析

  學生具有積極的學習態度,強烈的探究欲望,能主動參與研究。

  五、教學程序

  從建構主義的角度來看,數學學習是指學生自己建構數學知識的活動,在數學活動過程中,學生與教材及教師產生交互作用,形成了數學知識、技能和能力,發展了情感態度和思維品質。基于這一理論,我把這一節課的教學程序分成六個步驟來進行。

高中數學說課稿13

  大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設計。

  一、教材分析

  本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。

  根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:

  認知目標:通過創設問題情境,引導學生發現正弦定理的內容,掌握正弦定理的內容及其證明方法,使學生會運用正弦定理解決兩類基本的解三角形問題。

  能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。

  情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,激發學生學習的興趣。

  教學重點:正弦定理的內容,正弦定理的證明及基本應用。 教學難點:已知兩邊和其中一邊的對角解三角形時判斷解的個數。

  二、教法

  根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。

  三、學法

  指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。

  四、教學過程

  (一)創設情境(3分鐘)

  “興趣是最好的.老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。

  (二)猜想—推理—證明(15分鐘)

  激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。 提問:那結論對任意三角形都適用嗎?(讓學生分小組討論,并得出猜想)

  在三角形中,角與所對的邊滿足關系

  注意:1.強調將猜想轉化為定理,需要嚴格的理論證明。

  2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。

  3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。

  (三)總結--應用(3分鐘)

  1.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。

  2.運用正弦定理求解本節課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。

  (四)講解例題(8分鐘)

  1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

  2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

  例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中

  一邊的對角時解三角形的各種情形。完了把時間交給學生。

  (五)課堂練習(8分鐘)

  1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm

  2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°

  學生板演,老師巡視,及時發現問題,并解答。

  (六)小結反思(3分鐘)

  1.它表述了三角形的邊與對角的正弦值的關系。

  2.定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。

  3.會用向量作為數形結合的工具,將幾何問題轉化為代數問題。

  五、教學反思

  從實際問題出發,通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數學教學成為數學活動的教學。

高中數學說課稿14

  數學:人教A版必修3第二章第三節《變量之間的相關關系》說課稿各位老師:

  大家好!我叫***,來自**。我說課的題目是《變量之間的相關關系》,內容選自于高中教材新課程人教A版必修3第二章第三節,課時安排為三個課時,本節課內容為第一課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析四大方面來闡述我對這節課的分析和設計:

  一、教材分析

  1.教材所處的地位和作用

  本章我們所要學習的主要內容就是統計,在前面的章節中我們已經對統計的相關知識作了大致的了解。本節課我們要繼續探討的是變量之間的相關關系,它為接下來要學習的兩個變量的線性相關打下基礎。這是一個與現實實際生活聯系很緊密的知識,在教師的引導下,可使學生認識到在現實世界中存在不能用函數模型描述的變量關系,從而體會研究變量之間的相關關系的重要性.

  2.教學的重點和難點

  重點:①通過收集現實問題中兩個有關聯變量的數據直觀認識變量間的相關關系;

  ②利用散點圖直觀認識兩個變量之間的線性關系;

  難點:①變量之間相關關系的理解;②作散點圖和理解兩個變量的正相關和負相關

  二、教學目標分析

  1.知識與技能目標

  通過收集現實問題中兩個有關聯變量的數據認識變量間的相關關系

  2、過程與方法目標:

  明確事物間的相互聯系.認識現實生活中變量間除了存在確定的關系外,仍存在大量的非確定性的相關關系,并利用散點圖直觀體會這種相關關系.

  3、情感態度與價值觀目標:

  通過對事物之間相關關系的了解,讓學生們認識到現實中任何事物都是相互聯系的辯證法思想。

  三、教學方法與手段分析

  1.教學方法:結合本節課的教學內容和學生的認知水平,在教法上,我采用“問答探究”式的教學方法,層層深入。充分發揮教師的主導作用,讓學生真正成為教學活動的主體。

  2。教學手段:通過多媒體輔助教學,充分調動學生參與課堂教學的主動性與積極性。

  四、教學過程分析

  ㈠問題引出:

  請同學們如實填寫下表(在空格中打“√”)

  然后回答如下問題:①“你的數學成績對你的物理成績有無影響?”②“如果你的數學成績好,那么你的'物理成績也不會太差,如果你的數學成績差,那么你的物理成績也不會太好。”對你來說,是這樣嗎?同意這種說法的同學請舉手。

  根據同學們回答的結果,讓學生討論:我們可以發現自己的數學成績和物理成績存在某種關系。(似乎就是數學好的,物理也好;數學差的,物理也差,但又不全對。)教師總結如下:

  物理成績和數學成績是兩個變量,從經驗看,由于物理學習要用到比較多的數學知識和數學方法。數學成績的高低對物理成績的高低是有一定影響的。但決非唯一因素,還

  有其它因素,如圖所示(幻燈片給出):

  因此,不能通過一個人的數學成績是多少就準確地斷定他的物理成績能達到多少。但這兩個變量是有一定關系的,它們之間是一種不確定性的關系。如何通過數學成績的結果對物理成績進行合理估計有非常重要的現實意義。

  「設計意圖」通過對身邊事例的分析,引出我們今天將要學習的主要內容,由此可以激起學

  生們的學習興趣,為接下來的學習打下良好的基礎。

  ㈡探究新知

  ⒈概念形成

  教師提問:“像剛才這種情況在現實生活中是否還有?”學生們思考之后,請幾位同學就提出的問題作出回答。老師就舉出的例子,引導學生作出分析,然后由老師總結得出相關關系的概念。[兩個變量之間的關系可能是確定的關系(如:函數關系),或非確定性關系。當自變量取值一定時,因變量也確定,則為確定關系;當自變量取值一定時,因變量帶有隨機性,這種變量之間的關系稱為相關關系。相關關系是一種非確定性關系。]

  「設計意圖」從現實生活入手,抓住學生們的注意力,引導學生分析得出概念,讓學生真正參與到概念的形成過程中來。

  ⒉探究線性相關關系和其他相關關系

  「課件展示」

  例1在一次對人體脂肪和年齡關系的研究中,研究人員獲得了一組樣本數據:

  問題:針對于上述數據所提供的信息,你認為人體的脂肪含量與年齡之間有怎樣的關系?

  [教師特別向學生強調在研究兩個變量之間是否存在某種關系時,必須從散點圖入手(向學生介紹什么是散點圖)。并且引導學生從散點圖上可以得出如下規律:(幻燈片給出)

  ①如果所有的樣本點都落在某一函數曲線上,那么變量之間具有函數關系(確定性關系);②如果所有的樣本點都落在某一函數曲線的附近,那么變量之間具有相關關系(不確定性關系);③如果所有的樣本點都落在某一直線附近,那么變量之間具有線性相關關系(不確定性關系)。

  「設計意圖」通過對這個典型事例的分析,向學生們介紹什么是散點圖,并總結出如何從散點圖上判斷變量之間關系的規律。

  下面我們用TI圖形計算器作出這兩個變量的散點圖。

  學生實驗:先把數據中成對出現的兩個數分別作為橫坐標、縱坐標,把數據輸入到表格當中(第一列橫坐標、第二列縱坐標);然后,用TI圖形計算器作散點圖:

  [引導學生觀察作出的散點圖,體會現實生活中兩個變量之間的關系存在著不確定性。散點圖中的散點并不在一條直線上,只是分布在一條直線的周圍,即為線性相關關系。]

  「設計意圖」通過實驗讓學生們感受散點圖的主要形成過程,并由此引出線性相關關系。為后面回歸直線和回歸直線方程的學習做好鋪墊。

  「課件展示」四組數據,請學生作出散點圖,并觀察每組數據的特點。

  根據四組數據,學生作出四個散點圖。

  通過學生討論、交流、用TI圖形計算器展示、對比自己作出的散點圖,我們引出線性相關關系,正負相關關系的概念。

  「設計意圖」及時鞏固知識,學生通過親自動手作散點圖,并交流討論,進一步加深對散點圖的理解,并由此引出正負相關關系的概念,突破難點。

  ㈢例題講解,深化認識

  「課件展示」

  例2一般說來,一個人的身高越高,他的人就越大,相應地,他的右手一拃長就越長,因此,人的身高與右手一拃長之間存在著一定的關系。為了對這個問題進行調查,我們收集了北京市某中學20xx年高三年級96名學生的身高與右手一拃長的數據如下表。

  (1)根據上表中的數據,制成散點圖。你能從散點圖中發現身高與右手一拃長之間的近似關系嗎?

  (2)如果近似成線性關系,請畫出一條直線來近似地表示這種線性關系。

  (3)如果一個學生的身高是188cm,你能估計他的一拃大概有多長嗎?

  「設計意圖」這個例子很容易激起學生們的學習興趣,由此可達到更好的教學效果。通過對這道題的解答,使對前面知識的認識更加牢固。

  ㈣反思小結、培養能力

  ⑴變量間相關關系、線性關系和正負相關關系

  ⑵如何做散點圖

  「設計意圖」小節是一堂課的概括和總結,有利于優化學生的認知結構,把課堂教學傳授的知識較快轉化為學生的素質,也更進一步培養學生的歸納概括能力

  ㈤課后作業,自主學習

  習題2.31、2

  [設計意圖]課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度,并促使學生進一步鞏固和掌握所學內容。

高中數學說課稿15

  各位老師:

  今天我說課的題目是《輸入、輸出語句和賦值語句》,內容選自于新課程人教A版必修3第一章第二節,課時安排為一個課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析等四大方面來闡述我對這節課的分析和設計:

  一、教材分析

  1.教材所處的地位和作用

  我們用自然語言或程序框圖描述的算法,但是計算機是無法“看得懂,聽得見”的。因此還需要將算法用計算機能夠理解的程序設計語言翻譯成計算機程序。程序設計語言有很多種。為了實現算法中的三種基本的邏輯結構:順序結構、條件結構和循環結構,各種程序設計語言中都包含下列基本的算法語句:輸入語句、輸出語句、賦值語句、條件語句和循環語句.。而我們今天所要學習的是前三種算法語句,它們基本上是對應于算法中的順序結構的。

  2.教學的重點和難點

  重點:正確理解輸入語句、輸出語句、賦值語句的作用。

  難點:準確寫出輸入語句、輸出語句、賦值語句。

  二、教學目標分析

  1.知識與技能目標:

  (1)正確理解輸入語句、輸出語句、賦值語句的結構。

  (2)會寫一些簡單的程序。

  (3)掌握賦值語句中的“=”的作用。

  2.過程與方法目標:

  (1)讓學生充分地感知、體驗應用計算機解決數學問題的方法;并能初步操作、模仿。

  (2)通過模仿,操作,探索的過程,體會算法的基本思想和基本語句的用途,提高學生應用數學軟件的能力.

  3.情感,態度和價值觀目標

  (1) 通過對三種語句的了解和實現,發展有條理的思考,表達的能力,提高邏輯思維能力.

  (2) 學習算法語句,幫助學生利用計算機軟件實現算法,活躍思維,提高學生的數學素養.

  (3) 結合計算機軟件的應用, 增強應用數學的意識,在計算機上實現算法讓學生體會成功喜悅.

  三、教學方法與手段分析

  1.教學方法:引導與合作交流相結合,學生在體會三種語句結構格式的過程中,讓學生積極參與,討論交流,充分挖掘三種算法語句的格式特點及意義,在分析具體問題的過程中總結三種算法語句的思想與特征.

  2.教學手段:運用計算機、圖形計算器輔助教學

  四、教學過程分析

  1. 創設情境(約5分鐘)

  在課的開始,我要求學生們舉出一些在日常生活中所應用到的有關計算機的例子,如:聽MP3,看電影,玩游戲,打字排版,畫卡通畫,處理數據等等,并告訴他們在現代社會里,計算機已經成為人們日常生活和工作不可缺少的工具,然后接著問他們知不知道計算機到底是怎樣工作的?通過這個問題引出我們今天所要學習的內容。(板出課題)

  在這個過程中,我讓學生們將課本學習的內容與現實生活聯系在了一起,這樣能夠激起他們對接下來的所要學習內容的興趣,為整節課的學習打下一個良好的基礎。

  2.探究新知(約15分鐘)

  這里我先給出一個題目:用描點法作出函數

  的圖象,用描點法作函數的圖象時,需要先求出自變量與函數的對應值。編寫程序,分別計算當

  時的函數值。(程序由我在課前準備好,教學中直接調用運行)

  程序:INPUT“x=”;x 輸入語句

  y=x^3+3*x^2-24*x+30 賦值語句

  PRINT x 輸出語句

  PRINT y 輸出語句

  END

  (學生們先看,再跟著做,先不必深究該程序如何得來,只要模仿編寫程序,通過運行自己編寫的程序發現問題所在,進一步提高學生的模仿能力)

  之后,我向學生們提問:在這個程序中,他們覺得哪些是輸入語句、輸出語句和賦值語句?(同學們互相交流、議論、猜想、概括出結論。提示:“input”和“print”的中文意思,還要請學生們注意到在賦值語句中的賦值號“=”與數學中的.等號意義不同。)

  此過程由老師引導,學生們自己討論并總結出什么是輸入語句、輸出語句和賦值語句,這樣比老師直接地將知識傳授給他們,學習的效果更佳,同時也鍛煉了學生們思考問題的能力和概括能力,激發學習興趣。

  然后給出一個思考題:在1.1.2中程序框圖中的輸入框,輸出框的內容怎樣用輸入語句、輸出語句來表達?(學生討論、交流想法,然后請學生作答)這樣可以及時應用剛剛學習的內容,并可以將前后所學知識聯系起來。

  3.例題精析(約12分鐘)

  在本環節中我為學生們準備了三道例題,這三道例題均選自課本的例2、例3和例4,學生通過這幾道例題的講解,結合計算機程序上機運用,可以掌握在程序設計語言中的前三種算法語句,體會到他們在程序中的意義和作用。

  4.課堂精練(約4分鐘)

  P15 練習 1.

  提問:如果要求輸入一個攝氏溫度,輸出其相應的華氏溫度,又該如何設計程序?(學生課后思考,討論完成)通過提問啟發學生們思考,發散思維。

  5.課堂小結(約5分鐘)

  ⑴輸入語句、輸出語句和賦值語句的結構特點及聯系

  ⑵應用輸入語句,輸出語句,賦值語句編寫一些簡單的程序解決數學問題

  ⑶ 賦值語句中“=”的作用及應用

  ⑷編程一般的步驟:先寫出算法,再進行編程。

  6.布置作業

  P23 習題1.2 A組 1(2)、2

  [設計意圖]課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。

  7.板書設計

【高中數學說課稿】相關文章:

高中數學橢圓說課稿06-15

高中數學說課稿06-12

高中數學說課稿11-14

高中數學向量說課稿09-09

高中數學說課稿范文06-27

關于高中數學說課稿11-29

【推薦】高中數學說課稿01-06

高中數學說課稿【推薦】01-06

高中數學說課稿【熱】01-07

高中數學說課稿【薦】01-07

久久综合国产中文字幕,久久免费视频国产版原创视频,欧美日韩亚洲国内综合网香蕉,久久久久久久久久国产精品免费
亚洲视频免费观看 | 亚洲成a人片在线观看88 | 一本久久知道综合久久 | 青青青国产免费手机视频在线观看 | 日韩成AV人网站在线播放 | 视频一区中文字幕 |