初三數學知識點的歸納總結

時間:2023-03-21 19:39:30 少爍 知識點總結 我要投稿
  • 相關推薦

初三數學知識點的歸納總結

  總結是事后對某一階段的學習、工作或其完成情況加以回顧和分析的一種書面材料,他能夠提升我們的書面表達能力,我想我們需要寫一份總結了吧。我們該怎么寫總結呢?以下是小編為大家整理的初三數學知識點的歸納總結,希望能夠幫助到大家。

初三數學知識點的歸納總結

  初三數學知識點的歸納總結 1

  弧長公式

  n°的圓心角所對的弧長l的計算公式為L=nπr/180

  2、扇形面積公式,其中n是扇形的圓心角度數,R是扇形的半徑,l是扇形的弧長.

  S=﹙n/360﹚πR2=1/2×lR

  3、圓錐的側面積,其中l是圓錐的母線長,r是圓錐的地面半徑.

  S=1/2×l×2πr=πrl

  4、弦切角定理

  弦切角:圓的切線與經過切點的弦所夾的角,叫做弦切角.

  弦切角定理:弦切角等于弦與切線夾的弧所對的圓周角.

  選擇題

  已知圓柱體的底面半徑為3cm,髙為4cm,則圓柱體的側面積為()

  A.24πcm2B.36πcm2C.12cm2D.24cm2

  考點:圓柱的計算.

  分析:圓柱的.側面積=底面周長×高,把相應數值代入即可求解.

  解答:解:圓柱的側面積=2π×3×4=24π.

  故選A.

  點評:本題考查了圓柱的計算,解題的關鍵是弄清圓柱的側面積的計算方法.

  初三數學知識點的歸納總結 2

  一、相似三角形(7個考點)

  考點1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小

  考核要求:

  (1)理解相似形的概念;

  (2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小.

  考點2:平行線分線段成比例定理、三角形一邊的平行線的有關定理

  考核要求:理解并利用平行線分線段成比例定理解決一些幾何證明和幾何計算.

  注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用.

  考點3:相似三角形的概念

  考核要求:以相似三角形的概念為基礎,抓住相似三角形的特征,理解相似三角形的定義.

  考點4:相似三角形的判定和性質及其應用

  考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,并能較好地應用.

  考點5:三角形的重心

  考核要求:知道重心的定義并初步應用.

  考點6:向量的有關概念

  考點7:向量的加法、減法、實數與向量相乘、向量的線性運算

  考核要求:掌握實數與向量相乘、向量的線性運算

  二、銳角三角比(2個考點)

  考點8:銳角三角比(銳角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值.

  考點9:解直角三角形及其應用

  考核要求:

  (1)理解解直角三角形的意義;

  (2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形.

  三、二次函數(4個考點)

  考點10:函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數

  考核要求:

  (1)通過實例認識變量、自變量、因變量,知道函數以及函數的定義域、函數值等概念;

  (2)知道常值函數;

  (3)知道函數的表示方法,知道符號的意義.

  考點11:用待定系數法求二次函數的解析式

  考核要求:

  (1)掌握求函數解析式的方法;

  (2)在求函數解析式中熟練運用待定系數法.

  注意求函數解析式的步驟:一設、二代、三列、四還原.

  考點12:畫二次函數的圖像

  考核要求:

  (1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像;

  (2)理解二次函數的圖像,體會數形結合思想;

  (3)會畫二次函數的大致圖像.

  考點13:二次函數的圖像及其基本性質

  考核要求:

  (1)借助圖像的直觀、認識和掌握一次函數的性質,建立一次函數、二元一次方程、直線之間的聯系;

  (2)會用配方法求二次函數的頂點坐標,并說出二次函數的有關性質.

  注意:

  (1)解題時要數形結合;

  (2)二次函數的平移要化成頂點式.

  四、圓的相關概念(6個考點)

  考點14:圓心角、弦、弦心距的概念

  考核要求:清楚地認識圓心角、弦、弦心距的概念,并會用這些概念作出正確的判斷.

  考點15:圓心角、弧、弦、弦心距之間的關系

  考核要求:認清圓心角、弧、弦、弦心距之間的關系,在理解有關圓心角、弧、弦、弦心距之間的關系的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明.

  考點16:垂徑定理及其推論

  垂徑定理及其推論是圓這一板塊中最重要的知識點之一.

  考點17:直線與圓、圓與圓的位置關系及其相應的數量關系

  直線與圓的位置關系可從與之間的關系和交點的個數這兩個側面來反映.在圓與圓的位置關系中,常需要分類討論求解.

  考點18:正多邊形的有關概念和基本性質

  考核要求:熟悉正多邊形的有關概念(如半徑、邊心距、中心角、外角和),并能熟練地運用正多邊形的基本性質進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構成的直角三角形,將正多邊形的計算問題轉化為直角三角形的計算問題.

  考點19:畫正三、四、六邊形.

  考核要求:能用基本作圖工具,正確作出正三、四、六邊形.

  五、數據整理和概率統計(9個考點)

  考點20:確定事件和隨機事件

  考核要求:

  (1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關系;

  (2)能區分簡單生活事件中的必然事件、不可能事件、隨機事件.

  考點21:事件發生的可能性大小,事件的概率

  考核要求:

  (1)知道各種事件發生的可能性大小不同,能判斷一些隨機事件發生的可能事件的大小并排出大小順序;

  (2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;

  (3)理解隨機事件發生的頻率之間的區別和聯系,會根據大數次試驗所得頻率估計事件的概率.

  注意:

  (1)在給可能性的大小排序前可先用“一定發生”、“很有可能發生”、“可能發生”、“不太可能發生”、“一定不會發生”等詞語來表述事件發生的可能性的大小;

  (2)事件的概率是確定的常數,而概率是不確定的,可是近似值,與試驗的次數的多少有關,只有當試驗次數足夠大時才能更精確.

  考點22:等可能試驗中事件的概率問題及概率計算

  本考點的考核要求是

  (1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;

  (2)會用枚舉法或畫“樹形圖”方法求等可能事件的概率,會用區域面積之比解決簡單的概率問題;

  (3)形成對概率的初步認識,了解機會與風險、規則公平性與決策合理性等簡單概率問題.

  在求解概率問題中要注意:

  (1)計算前要先確定是否為可能事件;

  (2)用枚舉法或畫“樹形圖”方法求等可能事件的概率過程中要將所有等可能情況考慮完整.

  考點23:數據整理與統計圖表

  本考點考核要求是:

  (1)知道數據整理分析的意義,知道普查和抽樣調查這兩種收集數據的方法及其區別;

  (2)結合有關代數、幾何的內容,掌握用折線圖、扇形圖、條形圖等整理數據的方法,并能通過圖表獲取有關信息.

  考點24:統計的含義

  本考點的考核要求是:

  (1)知道統計的意義和一般研究過程;

  (2)認識個體、總體和樣本的區別,了解樣本估計總體的`思想方法.

  考點25:平均數、加權平均數的概念和計算

  本考點的考核要是:

  (1)理解平均數、加權平均數的概念;

  (2)掌握平均數、加權平均數的計算公式.注意:在計算平均數、加權平均數時要防止數據漏抄、重抄、錯抄等錯誤現象,提高運算準確率.

  考點26:中位數、眾數、方差、標準差的概念和計算

  考核要求:

  (1)知道中位數、眾數、方差、標準差的概念;

  (2)會求一組數據的中位數、眾數、方差、標準差,并能用于解決簡單的統計問題.

  注意:當一組數據中出現極值時,中位數比平均數更能反映這組數據的平均水平;(2)求中位數之前必須先將數據排序.

  考點27:頻數、頻率的意義,畫頻數分布直方圖和頻率分布直方圖

  考核要求:

  (1)理解頻數、頻率的概念,掌握頻數、頻率和總量三者之間的關系式;

  (2)會畫頻數分布直方圖和頻率分布直方圖,并能用于解決有關的實際問題.解題時要注意:頻數、頻率能反映每個對象出現的頻繁程度,但也存在差別:在同一個問題中,頻數反映的是對象出現頻繁程度的絕對數據,所有頻數之和是試驗的總次數;頻率反映的是對象頻繁出現的相對數據,所有的頻率之和是1.

  考點28:中位數、眾數、方差、標準差、頻數、頻率的應用

  本考點的考核要是:

  (1)了解基本統計量(平均數、眾數、中位數、方差、標準差、頻數、頻率)的意計算及其應用,并掌握其概念和計算方法;

  (2)正確理解樣本數據的特征和數據的代表,能根據計算結果作出判斷和預測;(3)能將多個圖表結合起來,綜合處理圖表提供的數據,會利用各種統計量來進行推理和分析,研究解決有關的實際生活中問題,然后作出合理的解決.

  初三數學知識點的歸納總結 3

  知識點1、概念

  把形狀相同的圖形叫做相似圖形。(即對應角相等、對應邊的比也相等的圖形)

  解讀:

  (1)兩個圖形相似,其中一個圖形可以看做由另一個圖形放大或縮小得到。

  (2)全等形可以看成是一種特殊的相似,即不僅形狀相同,大小也相同。

  (3)判斷兩個圖形是否相似,就是看這兩個圖形是不是形狀相同,與其他因素無關。

  知識點2、比例線段

  對于四條線段a,b,c,d,如果其中兩條線段的長度的比與另兩條線段的長度的比相等,即(或a:b=c:d)那么這四條線段叫做成比例線段,簡稱比例線段。

  知識點3、相似多邊形的性質

  相似多邊形的性質:相似多邊形的對應角相等,對應邊的比相等。

  解讀:

  (1)正確理解相似多邊形的定義,明確“對應”關系。

  (2)明確相似多邊形的“對應”來自于書寫,且要明確相似比具有順序性。

  知識點4、相似三角形的概念

  對應角相等,對應邊之比相等的三角形叫做相似三角形。

  解讀:

  (1)相似三角形是相似多邊形中的一種;

  (2)應結合相似多邊形的性質來理解相似三角形;

  (3)相似三角形應滿足形狀一樣,但大小可以不同;

  (4)相似用“∽”表示,讀作“相似于”;

  (5)相似三角形的對應邊之比叫做相似比。

  知識點5、相似三角的判定方法

  (1)定義:對應角相等,對應邊成比例的兩個三角形相似;

  (2)平行于三角形一邊的直線截其他兩邊(或其他兩邊的延長線)所構成的三角形與原三角形相似。

  (3)如果一個三角形的兩個角分別與另一個三角形的兩個角對應相等,那么這兩個三角形相似。

  (4)如果一個三角的兩條邊與另一個三角形的兩條邊對應成比例,并且夾角相等,那么這兩個三角形相似。

  (5)如果一個三角形的三條邊分別與另一個三角形的三條邊對應成比例,那么這兩個三角形相似。

  (6)直角三角形被斜邊上的.高分成的兩個直角三角形與原三角形都相似。

  知識點6、相似三角形的性質

  (1)對應角相等,對應邊的比相等;

  (2)對應高的比,對應中線的比,對應角平分線的比都等于相似比;

  (3)相似三角形周長之比等于相似比;面積之比等于相似比的平方。

  (4)射影定理

  初三數學知識點的歸納總結 4

  1、一元一次方程:

  ①在一個方程中,只含有一個未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。

  ②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。

  解一元一次方程的步驟:

  去分母,移項,合并同類項,未知數系數化為1。

  二元一次方程:含有兩個未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。

  二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。

  解二元一次方程組的方法:代入消元法/加減消元法。

  2、不等式與不等式組

  不等式:

  ①用符號”=“號連接的式子叫不等式。

  ②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。

  ③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。

  ④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。

  不等式的解集:

  ①能使不等式成立的未知數的值,叫做不等式的解。

  ②一個含有未知數的不等式的所有解,組成這個不等式的解集。

  ③求不等式解集的過程叫做解不等式。

  一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。

  一元一次不等式組:

  ①關于同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

  ②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的'解集。

  ③求不等式組解集的過程,叫做解不等式組。

  3、函數

  變量:因變量,自變量。在用圖象表示變量之間的關系時,通常用水平方向的數軸上的點自變量,用豎直方向的數軸上的點表示因變量。

  一次函數:

  ①若兩個變量X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等于0)的形式,則稱Y是X的一次函數。

  ②當B=0時,稱Y是X的正比例函數。

  一次函數的圖象:

  ①把一個函數的自變量X與對應的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。

  ②正比例函數Y=KX的圖象是經過原點的一條直線。

  ③在一次函數中,當K<0,B<O,則經234象限;當K<0,b>0時,則經124象限;當K>0,B<0時,則經134象限;當k>0,B>0時,則經123象限。

  ④當K>0時,Y的值隨X值的增大而增大,當X<0時,Y的值隨X值的增大而減少。

  初三數學知識點的歸納總結 5

  圖形的認識:

  1、點,線,面

  點,線,面:

  ①圖形是由點,線,面構成的。

  ②面與面相交得線,線與線相交得點。

  ③點動成線,線動成面,面動成體。

  展開與折疊:

  ①在棱柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。

  ②N棱柱就是底面圖形有N條邊的棱柱。

  截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

  視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的.封閉圖形。

  弧,扇形:

  ①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。

  ②圓可以分割成若干個扇形。

  角

  線:

  ①線段有兩個端點。

  ②將線段向一個方向無限延長就形成了射線。射線只有一個端點。

  ③將線段的兩端無限延長就形成了直線。直線沒有端點。

  ④經過兩點有且只有一條直線。

  比較長短:

  ①兩點之間的所有連線中,線段最短。

  ②兩點之間線段的長度,叫做這兩點之間的距離。

  角的度量與表示:

  ①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

  ②一度的1/60是一分,一分的1/60是一秒。

  角的比較:

  ①角也可以看成是由一條射線繞著他的端點旋轉而成的。

  ②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。

  ③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  平行:

  ①同一平面內,不相交的兩條直線叫做平行線。

  ②經過直線外一點,有且只有一條直線與這條直線平行。

  ③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

  垂直:

  ①如果兩條直線相交成直角,那么這兩條直線互相垂直。

  ②互相垂直的兩條直線的交點叫做垂足。

  ③平面內,過一點有且只有一條直線與已知直線垂直。

  2、相交線與平行線

  角:

  ①如果兩個角的和是直角,那么稱和兩個角互為余角;如果兩個角的和是平角,那么稱這兩個角互為補角。

  ②同角或等角的余角/補角相等。

  ③對頂角相等。

  ④同位角相等/內錯角相等/同旁內角互補,兩直線平行,反之亦然。

【初三數學知識點的歸納總結】相關文章:

初三數學扇形知識點歸納總結07-30

初三數學知識點歸納總結08-04

初三數學上冊知識點總結歸納集錦02-11

化學初三知識點總結歸納02-11

初三物理知識點總結歸納02-11

小升初的數學知識點總結歸納03-29

數學高二知識點總結歸納12-29

高考數學知識點歸納總結10-27

初中數學圓的知識點總結歸納02-07

久久综合国产中文字幕,久久免费视频国产版原创视频,欧美日韩亚洲国内综合网香蕉,久久久久久久久久国产精品免费
日本中文字幕视频久 | 日本免费无遮挡一区二区三区精品视频 | 在线观看片a免费观看岛国 亚洲综合在线区尤物 | 亚洲欧洲日本免费看 | 亚洲最大福利视频网站。 | 亚洲视频在线高清观看你懂得 |