七年級數學上冊知識點總結

時間:2024-04-08 18:34:56 曉麗 知識點總結 我要投稿

北師大版七年級數學上冊知識點總結

  上學期間,大家都背過不少知識點,肯定對知識點非常熟悉吧!知識點是知識中的最小單位,最具體的內容,有時候也叫“考點”。掌握知識點有助于大家更好的學習。以下是小編幫大家整理的北師大版七年級數學上冊知識點總結,歡迎大家借鑒與參考,希望對大家有所幫助。

北師大版七年級數學上冊知識點總結

  北師大版七年級數學上冊知識點總結

  代數式中的一種有理式:不含除法運算或分數,以及雖有除法運算及分數,但除式或分母中不含變數者,則稱為整式。 (分母中含有字母有除法運算的,那么式子叫做分式)

  1.單項式:數或字母的積(如5n),單個的數或字母也是單項式。

  (1)單項式的系數:單項式中的數字因數及性質符號叫做單項式的系數。(如果一個單項式,只含有數字因數,系數是它本身,次數是0)。

  (2)單項式的次數:一個單項式中,所有字母的指數的和叫做這個單項式的次數(非零常數的次數為0)。

  2.多項式

  (1)概念:幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數項。一個多項式有幾項就叫做幾項式。

  (2)多項式的次數:多項式中,次數最高的項的次數,就是這個多項式的次數。

  (3)多項式的排列:把一個多項式按某一個字母的指數從大到小的順序排列起來,叫做把多項式按這個字母降冪排列;把一個多項式按某一個字母的指數從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。

  在做多項式的排列的題時注意:

  (1)由于單項式的項包括它前面的性質符號,因此在排列時,仍需把每一項的性質符看作是這一項的一部分,一起移動。

  (2)有兩個或兩個以上字母的多項式,排列時,要注意:a.先確認按照哪個字母的指數來排列。

  b.確定按這個字母降冪排列,還是升冪排列。

  3.整式:單項式和多項式統稱為整式。

  4.列代數式的幾個注意事項

  (1)數與字母相乘,或字母與字母相乘通常使用“· ”乘,或省略不寫;

  (2)數與數相乘,仍應使用“×”乘,不用“· ”乘,也不能省略乘號;

  (3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;

  (4)帶分數與字母相乘時,要把帶分數改成假分數形式;

  (5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成3/a的形式;

  (6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a .

  整式的加減運算

  1.同類項的概念:所含字母相同,并且相同字母的次數也相同的項叫做同類項,幾個常數項也是同類項。(同類項與系數無關,與字母排列的順序也無關)。

  2.合并同類項:把多項式中的同類項合并成一項叫做合并同類項。法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。不能合并的項單獨作為一項,不可遺漏

  3.整式加減實質就是去括號,合并同類項。

  注:去括號時,如果括號外的因數是正數,去括號后原括號內各項的符號與原來的符號相同;如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反。一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。

  4.幾個重要的代數式:(m、n表示整數)

  (1)a與b的平方差是:a2-b2 ; a與b差的平方是:(a-b)2 ;(本式中2為平方)

  (2)若a、b、c是正整數,則兩位整數是:10a+b ,則三位整數是:100a+10b+c;

  (3)若m、n是整數,則被5除商m余n的數是:5m+n ;偶數是:2n,奇數是:2n+1;三個連續整數是:n-1、n、n+1;

  (4)若b>0,則正數是:a2+b,負數是:-a2-b,非負數是:a2,非正數是:-a2 (本式中2為平方)

  初中生如何能輕松學好數學有哪些技巧和方法

  初中生學習數學要會獨立思考

  初一初二是數學開竅的階段,在解題上初中生一定要學會自己獨立去思考。你需要做的就是不斷的做題來培養自己的這一能力。而在積累到一定的數量之后,你的這種獨立解題的能力是別人無法超越的。這個培養過程很簡單也很短,只要你得到一點的成就感對于初中數學你就會充滿自信。

  其實,學好初中數學關鍵在于自己的真實能力,而不是形式。很多的初中生數學筆記一大堆,最后考試的成績也就是那樣。在學習上初中數學也好,其他科目也罷,不要講究形式感,關鍵是要把一個個的問題和知識學透。不反對記筆記,但是不要一味的做筆記,聽初中數學課是需要過腦子的。

  學好初中數學要較真

  數學是一門嚴謹的學科,對于自己不會的地區和知識點初中生絕對不能模棱兩可的就過去了,而是要把它弄清楚做明白。有的同學在初中數學的學習中不會只是因為不熟而已,那么怎么辦?就是多練習和多思考,數學的學習沒有什么捷徑和技巧,熟能生巧才是最好的學習技巧。另外,初中數學想要打高分,在做題方面一定要仔細和認真,不能馬虎。

  數學數據的平均數中位數與眾數知識點

  1.數據13,10,12,8,7的平均數是10.

  2.數據3,4,2,4,4的眾數是4.

  3.數據1,2,3,4,5的中位數是3.

  北師大版七年級數學上冊知識點總結

  第一章 有理數

  (一)正負數

  1.正數:大于0的數。

  2.負數:小于0的數。

  3.0即不是正數也不是負數。

  4.正數大于0,負數小于0,正數大于負數。

  (二)有理數

  1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整數之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點后的數字是無限不循環的。如:π)

  2.整數:正整數、0、負整數,統稱整數。

  3.分數:正分數、負分數。

  (三)數軸

  1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)

  2.數軸的三要素:原點、正方向、單位長度。

  3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。

  4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數比較大小,絕對值大的反而小。

  (四)有理數的加減法

  1.先定符號,再算絕對值。

  2.加法運算法則:同號相加,取相同符號,并把絕對值相加。異號相加,取絕對值大的加數的符號,并用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。

  3.加法交換律:a+b= b+ a 兩個數相加,交換加數的位置,和不變。

  4.加法結合律:(a+b)+ c = a +(b+ c )三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。

  5. ab = a +(b) 減去一個數,等于加這個數的相反數。

  (五)有理數乘法(先定積的符號,再定積的大小)

  1.同號得正,異號得負,并把絕對值相乘。任何數同0相乘,都得0。

  2.乘積是1的兩個數互為倒數。

  3.乘法交換律:ab= ba

  4.乘法結合律:(ab)c = a (b c)

  5.乘法分配律:a(b +c)= a b+ ac

  (六)有理數除法

  1.先將除法化成乘法,然后定符號,最后求結果。

  2.除以一個不等于0的數,等于乘這個數的倒數。

  3.兩數相除,同號得正,異號得負,并把絕對值相除,0除以任何一個不等于0的數,都得0。

  (七)乘方

  1.求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)

  2.負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。

  (八)有理數的加減乘除混合運算法則

  1.先乘方,再乘除,最后加減。

  2.同級運算,從左到右進行。

  3.如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。

  (九)科學記數法、近似數、有效數字。

  第二章 整式

  (一)整式

  1.整式:單項式和多項式的統稱叫整式。

  2.單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。

  3.系數:一個單項式中,數字因數叫做這個單項式的系數。

  4.次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。

  5.多項式:幾個單項式的和叫做多項式。

  6.項:組成多項式的每個單項式叫做多項式的項。

  7.常數項:不含字母的項叫做常數項。

  8.多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。

  9.同類項:多項式中,所含字母相同,并且相同字母的指數也相同的項叫做同類項。

  10.合并同類項:把多項式中的同類項合并成一項,叫做合并同類項。

  (二)整式加減

  整式加減運算時,如果遇到括號先去括號,再合并同類項。

  1.去括號:一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。

  如果括號外的因數是正數,去括號后原括號內各項的符號與原來的符號相同。如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反。

  2.合并同類項:把多項式中的同類項合并成一項,叫做合并同類項。

  合并同類項后,所得項的系數是合并前各同類項的系數的和,且字母部分不變

  第三章 一元一次方程

  分析實際問題中的數量關系,利用其中的相等關系列出方程,是用數學解決實際問題的一種方法。

  (一)方程:先設字母表示未知數,然后根據相等關系,寫出含有未知數的等式叫方程。

  (二)一元一次方程:

  1.一元一次方程:方程里只含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程。

  2.解:求出的方程中未知數的值叫做方程的解。

  (二)等式的性質

  1.等式兩邊加(或減)同一個數(或式子),結果仍相等。

  如果a= b,那么a± c= b± c

  2.等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。

  如果a= b,那么a c= b c;

  如果a= b,(c0),那么a ∕c = b ∕ c。

  (三)解方程的步驟

  解一元一次方程的步驟:去分母、去括號、移項、合并同類項,未知數系數化為1。

  1.去分母:把系數化成整數。

  2.去括號

  3.移項:把等式一邊的某項變號后移到另一邊。

  4.合并同類項

  5.系數化為1

  第四章 圖形認識初步

  一、圖形認識初步

  1.幾何圖形:把從實物中抽象出來的各種圖形的統稱。

  2.平面圖形:有些幾何圖形的各部分都在同一平面內,這樣的圖形是平面圖形。

  3.立體圖形:有些幾何圖形的各部分不都在同一平面內,這樣的圖形是立體圖形。

  4.展開圖:有些立體圖形是由一些平面圖形圍成的,將它們的表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖。

  5.點,線,面,體

  ①圖形是由點,線,面構成的。

  ②線與線相交得點,面與面相交得線。

  ③點動成線,線動成面,面動成體。

  二、直線、線段、射線

  1.線段:線段有兩個端點。

  2.射線:將線段向一個方向無限延長就形成了射線。射線只有一個端點。

  3.直線:將線段的兩端無限延長就形成了直線。直線沒有端點。

  4.兩點確定一條直線:經過兩點有一條直線,并且只有一條直線。

  5.相交:兩條直線有一個公共點時,稱這兩條直線相交。

  6.兩條直線相交有一個公共點,這個公共點叫交點。

  7.中點:M點把線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。

  8.線段的性質:兩點的所有連線中,線段最短。(兩點之間,線段最短)

  9.距離:連接兩點間的線段的長度,叫做這兩點的距離。

  三、角

  1.角:有公共端點的兩條射線組成的圖形叫做角。

  2.角的度量單位:度、分、秒。

  3.角的度量與表示:

  ①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

  ②一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60進制。

  4.角的比較:

  ①角也可以看成是由一條射線繞著他的端點旋轉而成的。

  ②平角和周角:一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。平角等于180度。周角等于360度。直角等于90度。

  ③平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  ④工具:量角器、三角尺、經緯儀。

  5.余角和補角

  ①余角:兩個角的和等于90度,這兩個角互為余角。即其中每一個是另一個角的余角。

  ②補角:兩個角的和等于180度,這兩個角互為補角。即其中一個是另一個角的補角。

  ③補角的性質:等角的補角相等

  ④余角的性質:等角的余角相等

  北師大版七年級數學上冊知識點總結

  一、整式

  1、單項式:由數字和字母乘積組成的式子。系數,單項式的次數。單項式指的是數或字母的積的代數式。單獨一個數或一個字母也是單項式。因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,即分母中不含有字母,若式子中含有加、減運算關系,其也不是單項式。

  2、單項式的系數:是指單項式中的數字因數;

  3、單項數的次數:是指單項式中所有字母的指數的和。

  4、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式。每個單項式稱項,常數項,多項式的次數就是多項式中次數的次數。多項式的次數是指多項式里次數項的次數,這里ab是次數項,其次數是6;多項式的項是指在多項式中,每一個單項式。特別注意多項式的項包括它前面的性質符號。

  5、它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。

  6、單項式和多項式統稱為整式。

  二、整式的加減

  1、同類項:所含字母相同,并且相同字母的指數也相同的項。與字母前面的系數(≠0)無關。

  2、同類項必須同時滿足兩個條件:

  (1)所含字母相同;

  (2)相同字母的次數相同,二者缺一不可。同類項與系數大小、字母的排列順序無關

  3、合并同類項:把多項式中的同類項合并成一項。可以運用交換律,結合律和分配律。

  4、合并同類項法則:合并同類項后,所得項的系數是合并前各同類項的系數的和,且字母部分不變;

  5、去括號法則:去括號,看符號:是正號,不變號;是負號,全變號。

  6、整式加減的一般步驟:

  一去、二找、三合

  (1)如果遇到括號按去括號法則先去括號。

  (2)結合同類項。

  (3)合并同類項

  北師大版七年級數學上冊知識點總結

  相反數

  1.相反數

  只有符號不同的兩個數叫做互為相反數,其中一個是另一個的相反數,0的相反數是0。

  注意:

  ⑴相反數是成對出現的;

  ⑵相反數只有符號不同,若一個為正,則另一個為負;

  ⑶0的相反數是它本身;相反數為本身的數是0。

  2.相反數的性質與判定

  ⑴任何數都有相反數,且只有一個;

  ⑵0的相反數是0;

  ⑶互為相反數的兩數和為0,和為0的兩數互為相反數,即a,b互為相反數,則a+b=0

  3.相反數的幾何意義

  在數軸上與原點距離相等的兩點表示的兩個數,是互為相反數;互為相反數的兩個數,在數軸上的對應點(0除外)在原點兩旁,并且與原點的距離相等。0的相反數對應原點;原點表示0的相反數。說明:在數軸上,表示互為相反數的兩個點關于原點對稱。

  4.相反數的求法

  ⑴求一個數的相反數,只要在它的前面添上負號“-”即可求得(如:5的相反數是-5);

  ⑵求多個數的和或差的相反數時,要用括號括起來再添“-”,然后化簡(如;5a+b的相反數是-(5a+b)。化簡得-5a-b);

  ⑶求前面帶“-”的單個數,也應先用括號括起來再添“-”,然后化簡(如:-5的相反數是-(-5),化簡得5)

  5.相反數的表示方法

  ⑴一般地,數a的相反數是-a,其中a是任意有理數,可以是正數、負數或0。

  當a>0時,-a<0(正數的相反數是負數)

  當a<0時,-a>0(負數的相反數是正數)

  當a=0時,-a=0,(0的相反數是0)

  北師大版七年級數學上冊知識點總結

  數軸

  1.數軸的概念

  規定了原點,正方向,單位長度的直線叫做數軸。

  注意:

  ⑴數軸是一條向兩端無限延伸的直線;

  ⑵原點、正方向、單位長度是數軸的三要素,三者缺一不可;

  ⑶同一數軸上的單位長度要統一;

  ⑷數軸的三要素都是根據實際需要規定的。

  2.數軸上的點與有理數的關系

  ⑴所有的有理數都可以用數軸上的點來表示,正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,0用原點表示。

  ⑵所有的有理數都可以用數軸上的點表示出來,但數軸上的點不都表示有理數,也就是說,有理數與數軸上的點不是一一對應關系。(如,數軸上的點π不是有理數)

  3.利用數軸表示兩數大小

  ⑴在數軸上數的大小比較,右邊的數總比左邊的數大;

  ⑵正數都大于0,負數都小于0,正數大于負數;

  ⑶兩個負數比較,距離原點遠的數比距離原點近的數小。

  4.數軸上特殊的(小)數

  ⑴最小的自然數是0,無的自然數;

  ⑵最小的正整數是1,無的正整數;

  ⑶的負整數是-1,無最小的負整數

  5.a可以表示什么數

  ⑴a>0表示a是正數;反之,a是正數,則a>0;

  ⑵a<0表示a是負數;反之,a是負數,則a<0

  ⑶a=0表示a是0;反之,a是0,,則a=0

  北師大版七年級數學上冊知識點總結

  角的性質:

  (1)角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。

  (2)角的大小可以度量,可以比較

  (3)角可以參與運算。

  時針問題:

  時針每小時300,每分鐘0.50;分針每分鐘60;時針與分針每分鐘差5.50。

  時針與分針夾角=分×5.50—時×300(分針靠近12點)

  時針與分針夾角=時×300—分×5.50(時針靠近12點)

  若結果大于1800,另一角度用3600減這個角度。

  經過多少時間重合、垂直、在一條線上,用求出的重合、垂直、在一條線上的時間減去現在的時間。追及問題還可用追及度數/5.5。

  角的平分線

  從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  多邊形

  由一些不在同一條直線上的線段依次首尾相連組成的封閉平面圖形,叫做多邊形。

  從一個n邊形的同一個頂點出發,分別連接這個頂點與其余各頂點,可以把這個n邊形分割成(n—2)個三角形。n邊形內角和等于(n—2)×1800,正多邊形(每條邊都相等,每個內角都相等的多邊形)的每個內角都等于(n—2)×1800 / n

  過n邊形一個頂點有(n—3)條對角線,n邊形共(n—3)×n / 2條對角線。

  圓、弧、扇形

  圓:平面上一條線段繞著固定的一個端點旋轉一周,另一個端點形成的圖形叫做圓。固定的端點稱為圓心

  弧:圓上A、B兩點之間的部分叫做圓弧,簡稱弧。

  扇形:由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫做扇形。

  圓心角:頂點在圓心的角叫圓心角。

  北師大版七年級數學上冊知識點總結

  1、用加、減、乘(乘方)、除等運算符號把數或表示數的字母連接而成的式子,叫做代數式。(注:單獨一個數字或字母也是代數式)

  2、代數式的寫法:數學與字母相乘時,“×”號省略,數字寫在字母前;字母與字母相乘時,相同字母寫成冪的形式;數字與數字相乘時,“×”號不能省略;式中出現除法時,一般寫成分數形式。式中出現帶分數時,一般寫成假分數形式。

  3、分段問題書寫代數式時要分段考慮,有單位時要考慮是否要;如:電費、水費、出租車、商店優惠-------。

  4、單項式:由數字和字母乘積組成的式子。單獨一個數或一個字母也是單項式.因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,若①分母中不含有字母,②式子中含有加、減運算關系,也不是單項式.

  單項式的系數:是指單項式中的數字因數;(不要漏負號和分母)

  單項數的次數:是指單項式中所有字母的指數的和.(注意指數1)

  5、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式.每個單項式稱項,(其中不含字母的項叫常數項)多項式的次數是指多項式里次數最高項的次數(選代表);多項式的項是指在多項式中每一個單項式.特別注意多項式的項包括它前面的性質符號.它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。

  6、代數式分為整式和分式(分母里含有字母);整式分為單項式和多項式。

  初中數學實數知識點

  平方根:

  ①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。

  ②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。

  ③一個正數有2個平方根/0的平方根為0/負數沒有平方根。

  ④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。

  立方根:

  ①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。

  ②正數的立方根是正數、0的立方根是0、負數的立方根是負數。

  ③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。

  實數:

  ①實數分有理數和無理數。

  ②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。

  ③每一個實數都可以在數軸上的一個點來表示。

  初中提高數學成績訣竅

  數學不能只依靠上課聽得懂

  很多初中生認為自己只要上數學課聽得懂就夠了,但是一做到綜合題就蒙了,基礎題會做,但是會馬虎。這類問題都是學生在課堂上都以為自己聽得懂就夠了。

  初中同學要首先對數學做一個認知,聽得懂≠會做,會做≠拿的到分。聽得懂只占你數學成績的20%,僅僅聽得懂只說明你理解能力還可以,不說明你能拿到很高的數學成績。

  只有聽的懂理解了加上練,再加上多練,達到最后又快又準的做出來,這時候的數學成績才會有長足的進步。

  三個重要的數學思想

  1、方程的思想。數學是研究事物的空間形式和數量關系的,初中數學最重要的就是等量關系,其次是不等量關系。最常見的等量關系就是方程。

  2、數形結合的思想。任何一道題,只要與形沾邊,就應該根據題意中的草圖分析一番。這樣做,不但直觀,而且全面,整體性強。

  3、對應的思想。

  初中生數學成績的提高,需要靠自己勤加練習和腳踏實地的去接受數學。

  七年級數學上冊知識點總結 1

  七年級數學上冊知識點總結

  1.有理數:

  (1)凡能寫成x形式的數,都是有理數。正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數。注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

  (2)有理數的分類:x①x②

  2.數軸:

  數軸是規定了原點、正方向、單位長度的一條直線。

  3.相反數:

  (1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

  (2)相反數的和為0x?xa+b=0x?xa、b互為相反數。

  4.絕對值:

  (1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

  (2)x絕對值可表示為:x或x;絕對值的問題經常分類討論;

  5.有理數比大小:

  (1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大于一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數x>x0,小數-大數x

  6.互為倒數:

  乘積為1的兩個數互為倒數;注意:0沒有倒數;若xa≠0,那么x的倒數是x;若ab=1?xa、b互為倒數;若ab=-1?xa、b互為負倒數。

  7.有理數加法法則:

  (1)同號兩數相加,取相同的符號,并把絕對值相加;

  (2)異號兩數相加,取絕對值較大的'符號,并用較大的絕對值減去較小的絕對值;

  (3)一個數與0相加,仍得這個數。

  8.有理數加法的運算律:

  (1)加法的交換律:a+b=b+ax;(2)加法的結合律:(a+b)+c=a+(b+c).

  9.有理數減法法則:

  減去一個數,等于加上這個數的相反數;即a-b=a+(-b).

  10.有理數乘法法則:

  (1)兩數相乘,同號為正,異號為負,并把絕對值相乘;

  (2)任何數同零相乘都得零;

  (3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。

  11.有理數乘法的運算律:

  (1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+acx.

  12.有理數除法法則:

  除以一個數等于乘以這個數的倒數;注意:零不能做除數,x.

  13.有理數乘方的法則:

  (1)正數的任何次冪都是正數;

  (2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:x(-a)n=-an或(ax-b)n=-(b-a)nx,x當n為正偶數時:x(-a)nx=anx或x(a-b)n=(b-a)nx.

  14.乘方的定義:

  (1)求相同因式積的運算,叫做乘方;

  (2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

  15.科學記數法:

  把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法。

  16.近似數的精確位:

  一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位。

  17.有效數字:

  從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。

  18.混合運算法則:

  先乘方,后乘除,最后加減。

【七年級數學上冊知識點總結】相關文章:

七年級上冊數學知識點總結07-21

七年級上冊數學知識點總結07-21

七年級上冊數學知識點總結01-30

七年級數學上冊知識點總結04-12

七年級數學上冊知識點總結12-21

七年級上冊數學整式知識點08-02

七年級人教版數學上冊知識點09-28

初三數學上冊知識點總結08-07

初二數學上冊知識點總結01-05

初三數學上冊知識點總結06-19

久久综合国产中文字幕,久久免费视频国产版原创视频,欧美日韩亚洲国内综合网香蕉,久久久久久久久久国产精品免费
在线观看亚洲欧美日本专区 | 日韩精品在线观看视频 | 欧美区一区二区三区在线视频 | 亚洲欧美日韩在线综合第一页 | 自拍视频在线看伦 | 一区二区三区在线|欧黑人 亚洲第一国产综合 |