初二數學的知識點總結
總結是事后對某一階段的學習、工作或其完成情況加以回顧和分析的一種書面材料,它可以促使我們思考,不如我們來制定一份總結吧?偨Y怎么寫才是正確的呢?下面是小編為大家收集的初二數學知識點總結,希望能夠幫助到大家。
初二數學的知識點總結 1
一次函數
一、正比例函數與一次函數的概念:
一般地,形如y=kx(k為常數,且k≠0)的函數叫做正比例函數.其中k叫做比例系數。
一般地,形如y=kx+b(k,b為常數,且k≠0)的函數叫做一次函數.
當b=0時,y=kx+b即為y=kx,所以正比例函數,是一次函數的特例.
二、正比例函數的圖象與性質:
(1)圖象:正比例函數y=kx(k是常數,k≠0))的圖象是經過原點的一條直線,我們稱它為直線y=kx。
(2)性質:當k>0時,直線y=kx經過第三,一象限,從左向右上升,即隨著x的增大y也增大;當k0,b>0圖像經過一、二、三象限;
(2)k>0,b<0圖像經過一、三、四象限;
(3)k>0,b=0圖像經過一、三象限;
(4)k<0,b>0圖像經過一、二、四象限;
(5)k<0,b<0圖像經過二、三、四象限;
(6)k<0,b=0圖像經過二、四象限。
一次函數表達式的確定
求一次函數y=kx+b(k、b是常數,k≠0)時,需要由兩個點來確定;求正比例函數y=kx(k≠0)時,只需一個點即可.
5.一次函數與二元一次方程組:
解方程組
從“數”的角度看,自變量(x)為何值時兩個函數的值相等.并
求出這個函數值
解方程組從“形”的`角度看,確定兩直線交點的坐標.
數據的分析
數據的代表:平均數、眾數、中位數、極差、方差
初二數學的知識點總結 2
一、軸對稱圖形
1、把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。
2、這條直線就是它的對稱軸。這時我們也說這個圖形關于這條直線(成軸)對稱。
3、把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那么就說這兩個圖關于這條直線
4、軸對稱與軸對稱圖形的性質
、訇P于某直線對稱的兩個圖形是全等形。
②如果兩個圖形關于某條直線對稱,那么對稱軸是任何一對對應點所連線段的垂直平分線。
、圯S對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
、苋绻麅蓚圖形的對應點連線被同條直線垂直平分,那么這兩個圖形關于這條直線對稱。
⑤兩個圖形關于某條直線成軸對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上。
二、線段的垂直平分線
1.定義:經過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。
2.性質:線段垂直平分線上的點與這條線段的兩個端點的距離相等
3.判定:與一條線段兩個端點距離相等的點,在線段的垂直平分線上
三、用坐標表示軸對稱小結:
1.在平面直角坐標系中
、訇P于x軸對稱的點橫坐標相等,縱坐標互為相反數;
、陉P于y軸對稱的點橫坐標互為相反數,縱坐標相等;
、坳P于原點對稱的點橫坐標和縱坐標互為相反數;
、芘cX軸或Y軸平行的直線的兩個點橫(縱)坐標的關系;
、蓐P于與直線X=C或Y=C對稱的坐標
點(x, y)關于x軸對稱的點的坐標為_(x, -y)_____.
點(x, y)關于y軸對稱的點的坐標為___(-x, y)___.
2.三角形三條邊的垂直平分線相交于一點,這個點到三角形三個頂點的距離相等
四、(等腰三角形)知識點回顧
1.等腰三角形的性質
①.等腰三角形的兩個底角相等。(等邊對等角)
、.等腰三角形的'頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)
理解:已知等腰三角形的一線就可以推知另兩線。
2、等腰三角形的判定:
如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)
五、(等邊三角形)知識點回顧
1、等邊三角形的性質:
等邊三角形的三個角都相等,并且每一個角都等于600 。
2、等邊三角形的判定:
、偃齻角都相等的三角形是等邊三角形。
、谟幸粋角是600的等腰三角形是等邊三角形。
3.在直角三角形中,如果一個銳角等于30,那么它所對的直角邊等于斜邊的一半。
初二數學的知識點總結 3
第一章分式
1、分式及其基本性質分式的分子和分母同時乘以(或除以)一個不等于零的整式,分式的只不變。
2、分式的運算。
。1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
。2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減
3、整數指數冪的加減乘除法。
4、分式方程及其解法。
第二章反比例函數
1、反比例函數的表達式、圖像、性質
圖像:雙曲線
表達式:y=k/x(k不為0)
性質:兩支的增減性相同;
2、反比例函數在實際問題中的應用
第三章勾股定理
1、勾股定理:直角三角形的兩個直角邊的平方和等于斜邊的平方
2、勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等于第三條邊的平方,那么這個三角形是直角三角形
第四章四邊形
1、平行四邊形
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,并且等于第三邊的一半。
2、特殊的平行四邊形:矩形、菱形、正方形
。1)矩形
性質:矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質
判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等于斜邊的一半。
。2)菱形性質:菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質
判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。
。3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。
第五章數據的分析
加權平均數、中位數、眾數、極差、方差
初二必備數學知識
位置與坐標
1、確定位置
在平面內,確定物體的位置一般需要兩個數據。
2、平面直角坐標系及有關概念
①平面直角坐標系
在平面內,兩條互相垂直且有公共原點的數軸,組成平面直角坐標系。其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。
、谧鴺溯S和象限
為了便于描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(坐標軸上的點),不屬于任何一個象限。
③點的坐標的概念
對于平面內任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應的`數a,b分別叫做點P的橫坐標、縱坐標,有序數對(a,b)叫做點P的坐標。
點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在后,中間有“,”分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,(a,b)和(b,a)是兩個不同點的坐標。
平面內點的與有序實數對是一一對應的。
、懿煌恢玫狞c的坐標的特征
a、各象限內點的坐標的特征
點P(x,y)在第一象限→ x>0,y>0
點P(x,y)在第二象限→ x0
點P(x,y)在第三象限→ x<0,y<0
點P(x,y)在第四象限→ x>0,y<0
b、坐標軸上的點的特征
點P(x,y)在x軸上→ y=0,x為任意實數
點P(x,y)在y軸上→ x=0,y為任意實數
點P(x,y)既在x軸上,又在y軸上→ x,y同時為零,即點P坐標為(0,0)即原點
c、兩條坐標軸夾角平分線上點的坐標的特征
點P(x,y)在第一、三象限夾角平分線(直線y=x)上→ x與y相等
點P(x,y)在第二、四象限夾角平分線上→ x與y互為相反數
d、和坐標軸平行的直線上點的坐標的特征
位于平行于x軸的直線上的各點的縱坐標相同。
位于平行于y軸的直線上的各點的橫坐標相同。
e、關于x軸、y軸或原點對稱的點的坐標的特征
點P與點p’關于x軸對稱橫坐標相等,縱坐標互為相反數,即點P(x,y)關于x軸的對稱點為P’(x,—y)
點P與點p’關于y軸對稱縱坐標相等,橫坐標互為相反數,即點P(x,y)關于y軸的對稱點為P’(—x,y)
點P與點p’關于原點對稱,橫、縱坐標均互為相反數,即點P(x,y)關于原點的對稱點為P’(—x,—y)
f、點到坐標軸及原點的距離
點P(x,y)到坐標軸及原點的距離:
點P(x,y)到x軸的距離等于?y?
點P(x,y)到y軸的距離等于?x?
點P(x,y)到原點的距離等于√x2+y2
初二數學的知識點總結 4
一次函數
1、函數
一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數,其中x是自變量,y是因變量。
2、自變量取值范圍
使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數),分式(分母不為0)、二次根式(被開方數為非負數)、實際意義幾方面考慮。
3、函數的三種表示法及其優缺點
關系式(解析)法兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做關系式(解析)法。
列表法把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
圖象法用圖象表示函數關系的方法叫做圖象法。
4、由函數關系式畫其圖像的一般步驟
列表:列表給出自變量與函數的一些對應值。
描點:以表中每對對應值為坐標,在坐標平面內描出相應的點。
連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
5、正比例函數和一次函數
①正比例函數和一次函數的概念
一般地,若兩個變量x,y間的關系可以表示成y=kx+b(k,b為常數,k不等于0)的形式,則稱y是x的'一次函數(x為自變量,y為因變量)。
特別地,當一次函數y=kx+b中的b=0時(k為常數,k不等于0),稱y是x的正比例函數。
、谝淮魏瘮档膱D像:
所有一次函數的圖像都是一條直線。
、垡淮魏瘮怠⒄壤瘮祱D像的主要特征
一次函數y=kx+b的圖像是經過點(0,b)的直線;
初二數學的知識點總結 5
第一章勾股定理
1、探索勾股定理
①勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方,如果用a,b和c分別表示直角三角形的兩直角邊和斜邊,那么a2+b2=c2
2、一定是直角三角形嗎
、偃绻切蔚娜呴La b c滿足a2+b2=c2,那么這個三角形一定是直角三角形
3、勾股定理的應用
第二章實數
1、認識無理數
①有理數:總是可以用有限小數和無限循環小數表示
、跓o理數:無限不循環小數
2、平方根
、偎銛灯椒礁阂话愕兀绻粋正數x的平方等于a,即x2=a,那么這個正數x就叫做a的算數平方根
、谔貏e地,我們規定:0的算數平方根是0
③平方根:一般地,如果一個數x的平方等于a,即x2=a。那么這個數x就叫做a的平方根,也叫做二次方根
④一個正數有兩個平方根;0只有一個平方根,它是0本身;負數沒有平方根
⑤正數有兩個平方根,一個是a的算數平方,另一個是—,它們互為相反數,這兩個平方根合起來可記作±
⑥開平方:求一個數a的平方根的運算叫做開平方,a叫做被開方數
3、立方根
、倭⒎礁阂话愕,如果一個數x的立方等于a,即x3=a,那么這個數x就叫做a的立方根,也叫三次方根
②每個數都有一個立方根,正數的立方根是正數;0立方根是0;負數的立方根是負數。
、坶_立方:求一個數a的立方根的運算叫做開立方,a叫做被開方數
4、估算
、俟浪悖话憬Y果是相對復雜的小數,估算有精確位數
5、用計算機開平方
6、實數
、賹崝担河欣頂岛蜔o理數的統稱
、趯崝狄部梢苑譃檎龑崝怠0、負實數
③每一個實數都可以在數軸上表示,數軸上每一個點都對應一個實數,在數軸上,右邊的點永遠比左邊的點表示的數大
7、二次根式
、俸x:一般地,形如(a≥0)的式子叫做二次根式,a叫做被開方數
、 =(a≥0,b≥0),=(a≥0,b>0)
③最簡二次根式:一般地,被開方數不含分母,也不含能開的盡方的因數或因式,這樣的二次根式,叫做最簡二次根式
④化簡時,通常要求最終結果中分母不含有根號,而且各個二次根式時最簡二次根式
第三章位置與坐標
1、確定位置
①在平面內,確定一個物體的位置一般需要兩個數據
2、平面直角坐標系
、俸x:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系
、谕ǔ5,兩條數軸分別置于水平位置與豎直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或者橫軸,豎直的數軸叫y軸和縱軸,二者統稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點
、劢⒘似矫嬷苯亲鴺讼,平面內的點就可以用一組有序實數對來表示
④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限
、菰谥苯亲鴺讼抵,對于平面上任意一點,都有唯一的一個有序實數對(即點的坐標)與它對應;反過來,對于任意一個有序實數對,都有平面上唯一的一點與它對應
3、軸對稱與坐標變化
、訇P于x軸對稱的兩個點的坐標,橫坐標相同,縱坐標互為相反數;關于y軸對稱的兩個點的坐標,縱坐標相同,橫坐標互為相反數
第四章一次函數
1、函數
、僖话愕,如果在一個變化過程中有兩個變量x和y,并且對于變量x的每一個值,變量y都有唯一的值與它對應,那么我們稱y是x的函數其中x是自變量
、诒硎竞瘮档姆椒ㄒ话阌校毫斜矸ā㈥P系式法和圖象法
、蹖τ谧宰兞吭诳扇≈捣秶鷥鹊囊粋確定的值a,函數有唯一確定的對應值,這個對應值稱為當自變量等于a的函數值
2、一次函數與正比例函數
、偃魞蓚變量x,y間的對應關系可以表示成y=kx+b(k、b為常數,k≠0)的形式,則稱y是x的一次函數,特別的,當b=0時,稱y是x的正比例函數
3、一次函數的圖像
、僬壤瘮祔=kx的圖像是一條經過原點(0,0)的直線。因此,畫正比例函數圖像是,只要再確定一點,過這個點與原點畫直線就可以了
、谠谡壤瘮祔=kx中,當k>0時,y的值隨著x值的增大而減小;當k<0時,y的值隨著x的值增大而減小
③一次函數y=kx+b的圖像是一條直線,因此畫一次函數圖像時,只要確定兩個點,再過這兩點畫直線就可以了。一次函數y=kx+b的圖像也稱為直線y=kx+b
、芤淮魏瘮祔=kx+b的圖像經過點(0,b)。當k>0時,y的值隨著x值的增大而增大;當k<0時,y的值隨著x值的增大而減小
4、一次函數的應用
、僖话愕,當一次函數y=kx+b的函數值為0時,相應的自變量的值就是方程kx+b=0的解,從圖像上看,一次函數y=kx+b的圖像與x軸交點的橫坐標就是方程kx+b=0
第五章二元一次方程組
1、認識二元一次方程組
、俸袃蓚未知數,并且所含有未知數的項的次數都是1的方程叫做二元一次方程
、诠埠袃蓚未知數的兩個一次方程所組成的一組方程,叫做二元一次方程組
、鄱淮畏匠探M中各個方程的公共解,叫做這個二元一次方程組的解
2、求解二元一次方程組
、賹⑵渲幸粋方程中的某個未知數用含有另一個未知數的代數式表示出來,并代入另個方程中,從而消去一個未知數,化二元一次方程組為一元一次方程,這種解方程組的'方法稱為代入消元法,簡稱代入法
、谕ㄟ^兩式子加減,消去其中一個未知數,這種解二元一次方程組的方法叫做加減消元法,簡稱加減法
3、應用二元一次方程組
、匐u兔同籠
4、應用二元一次方程組
、僭鰷p收支
5、應用二元一次方程組
、倮锍瘫系臄
6、二元一次方程組與一次函數
、僖话愕兀砸粋二元一次方程的解為坐標的點組成的圖像與相應的一次函數的圖像相同,是一條直線
、谝话愕,從圖形的角度看,確定兩條直線相交點的坐標,相當于求相應的二元一次方程組的解,解一個二元一次方程組相當于確定相應兩條直線交點的坐標
7、用二元一次方程組確定一次函數表達式
①先設出函數表達式,再根據所給條件確定表達式中未知的系數,從而得到函數表達式的方法,叫做待定系數法。
8、三元一次方程組
①在一個方程組中,各個式子都含有三個未知數,并且所含有未知數的項的次數都是1,這樣的方程叫做三元一次方程
、谙襁@樣,共含有三個未知數的三個一次方程所組成的一組方程,叫做三元一次方程組
③三元一次方程組中各個方程的公共解,叫做這個三元一次方程組的解。
第六章數據的分析
1、平均數
、僖话愕兀瑢τ趎個數x1x2.....xn,我們把(x1+x2+···+xn)叫做這n個數的算數平均數,簡稱平均數記為。
、谠趯嶋H問題中,一組數據里的各個數據的“重要程度”未必相同,因而在計算,這組數據的平均數時,往往給每個數據一個權,叫做加權平均數
2、中位數與眾數
、僦形粩担阂话愕,n個數據按大小順序排列,處于最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數
②一組數據中出現次數最多的那個數據叫做這組數據的眾數
③平均數、中位數和眾數都是描述數據集中趨勢的統計量
、苡嬎闫骄鶖禃r,所有數據都參加運算,它能充分地利用數據所提供的信息,因此在現實生活中較為常用,但他容易受極端值影響。
、葜形粩档膬烖c是計算簡單,受極端值影響較小,但不能充分利用所有數據的信息
、薷鱾數據重復次數大致相等時,眾數往往沒有特別意義
3、從統計圖分析數據的集中趨勢
4、數據的離散程度
①實際生活中,除了關心數據的集中趨勢外,人們還關注數據的離散程度,即它們相對于集中趨勢的偏離情況。一組數據中最大數據與最小數據的差,(稱為極差),就是刻畫數據離散程度的一個統計量
、跀祵W上,數據的離散程度還可以用方差或標準差刻畫
、鄯讲钍歉鱾數據與平均數差的平方的平均數
、芷渲惺莤1x2......xn平均數,s2是方差,而標準差就是方差的算術平方根
⑤一般而言,一組數據的極差、方差或標準差越小,這組數據就越穩定。
第七章平行線的證明
1、為什么要證明
、賹嶒灐⒂^察、歸納得到的結論可能正確,也可能不正確,因此,要判斷一個數學結論是否正確,僅僅依靠實驗、觀察、歸納是不夠的,必須進行有根有據的證明
2、定義與命題
①證明時,為了交流方便,必須對某些名稱和術語形成共同的認識,為此,就要對名稱和術語的含義加以描述,做出明確的規定,也就是給它們的定義
、谂袛嘁患虑榈木渥,叫做命題
③一般地,每個命題都由條件和結論兩部分組成。條件是已知的選項,結論是已知選項推出的事項。命題通常可以寫成“如果....那么....”的形式,其中“如果”引出的部分是條件,“那么”引出的部分是結論
④正確的命題稱為真命題,不正確的命題稱為假命題
、菀f明一個命題是假命題,常?梢耘e出一個例子,使它具備命題的條件,而不具有命題的結論,這種例子稱為反例
、逇W幾里得在編寫《原本》時,挑選了一部分數學名詞和一部分公認的真命題作為證實其他命題的出發點和依據。其中數學名詞稱為原名,公認的真命題稱為公理,除了公理外,其他命題的真假都需要通過演繹推理的方法進行判斷
、哐堇[推理的過程稱為證明,經過證明的真命題稱為定理,每個定理都只能用公理、定義和已經證明為真的命題來證明
a.本套教科書選用九條基本事實作為證明的出發點和依據,其中八條是:兩點確定一條直線
b.兩點之間線段最短
c.同一平面內,過一點有且只有一條直線與已知直線垂直
d.兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行(簡述為:同位角相等,兩直線平行)
e.過直線外一點有且只有一條直線與這條直線平行
f.兩邊及其夾角分別相等的兩個三角形全等
g.兩角及其夾邊分別相等的兩個三角形全等
h.三邊分別相等的兩個三角形全等
、啻送,數與式的運算律和運算法則、等式的有關性質,以及反映大小關系的有關性質都可以作為證明的依據
⑨ 定理:同角(等角)的補角相等
同角(等角)的余角相等
三角形的任意兩邊之和大于第三邊
對頂角相等
3、平行線的判定
① 定理:兩條直線被第三條直線所截,如果內錯角相等,那么這兩條直線平行,簡述為:內錯角相等,兩直線平行
、 定理:兩條直線被第三條直線所截,如果同旁內角互補,那么這兩條直線平行,簡述為:同旁內角互補,兩直線平行。
4、平行線的性質
① 定理:兩條平行直線被第三條直線所截,同位角相等。簡述為:兩直線平行,同位角相等
② 定理:兩條平行直線被第三條直線所截,內錯角相等。簡述為:兩直線平行,內錯角相等
、 定理:兩條平行直線被第三條直線所截,同旁內角互補。簡述為:兩直線平行,同旁內角互補
、 定理:平行于同一條直線的兩條直線平行
5、三角形內角和定理
① 三角形內角和定理:三角形的內角和等于180°
、 定理:三角形的一個外角等于和它不相鄰的兩個內角的和
定理:三角形的一個外角大于任何一個和它不相鄰的內角
、 我們通過三角形的內角和定理直接推導出兩個新定理。像這樣,由一個基本事實或定理直接推出的定理,叫做這個基本事實或定理的推論,推論可以當定理使用。
初二數學的知識點總結 6
。ㄒ唬┻\用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有:
a2—b2=(a+b)(a—b)
a2+2ab+b2=(a+b)2
a2—2ab+b2=(a—b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
。ǘ┢椒讲罟
1.平方差公式
(1)式子: a2—b2=(a+b)(a—b)
(2)語言:兩個數的平方差,等于這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。
。ㄋ模┩耆椒焦
。1)把乘法公式(a+b)2=a2+2ab+b2 和 (a—b)2=a2—2ab+b2反過來,就可以得到:
a2+2ab+b2 =(a+b)2
a2—2ab+b2 =(a—b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等于這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2—2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
。2)完全平方式的形式和特點
、夙棓担喝
、谟袃身検莾蓚數的的平方和,這兩項的符號相同。
、塾幸豁検沁@兩個數的積的兩倍。
。3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
。4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
。5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
。ㄎ澹┓纸M分解法
我們看多項式am+ an+ bm+ bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。
如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式。
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義。但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)×(a +b)。
這種利用分組來分解因式的方法叫做分組分解法。從上面的例子可以看出,如果把一個多項式的項分組并提取公因式后它們的另一個因式正好相同,那么這個多項式就可以用分組分解法來分解因式。
。┨峁蚴椒
1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式。當多項式各項的'公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式。
2. 運用公式x2 +(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:
1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等于一次項的系數。
2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:
、 列出常數項分解成兩個因數的積各種可能情況;
、趪L試其中的哪兩個因數的和恰好等于一次項系數。
3.將原多項式分解成(x+q)(x+p)的形式。
(七)分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分。
2.分式進行約分的目的是要把這個分式化為最簡分式。
3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式。如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分。
4.分式約分中注意正確運用乘方的符號法則,如x—y=—(y—x),(x—y)2=(y—x)2,(x—y)3=—(y—x)3。
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按—1的偶次方為正、奇次方為負來處理。當然,簡單的分式之分子分母可直接乘方。
6.注意混合運算中應先算括號,再算乘方,然后乘除,最后算加減。
。ò耍┓謹档募訙p法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形。約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來。
2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變。
3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備。
4.通分的依據:分式的基本性質。
5.通分的關鍵:確定幾個分式的公分母。
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母。
6.類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分。
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然后再加減。
9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括號。
10.對于整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分。
11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運算簡化。
12.作為最后結果,如果是分式則應該是最簡分式。
。ň牛┖凶帜赶禂档囊辉淮畏匠
1.含有字母系數的一元一次方程
引例:一數的a倍(a≠0)等于b,求這個數。用x表示這個數,根據題意,可得方程 ax=b(a≠0)
在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的系數,b是常數項。這個方程就是一個含有字母系數的一元一次方程。
含有字母系數的方程的解法與以前學過的只含有數字系數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等于零
初二數學的知識點總結 7
一、三角形相關概念
1.三角形的概念
由不在同一直線上的三條線段首尾順次連結所組成的圖形叫做三角形要點:①三條線段;②不在同一直線上;③首尾順次相接.2.三角形的表示
通常用三個大寫字母表示三角形的頂點,如用A、B、C表示三角形的三個頂點時,此三角形可記作△ABC,其中線段AB、BC、AC是三角形的三條邊,∠A、∠B、∠C分別表示三角形的三個內角.3.三角形中的三種重要線段
三角形的角平分線、中線、高線是三角形中的三種重要線段.
。1)三角形的角平分線:三角形一個角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線.
注意:
①三角形的角平分線是一條線段,而角的平分線是經過角的頂點且平分此角的一條射線.
、谌切斡腥龡l角平分線且相交于一點,這一點一定在三角形的內部.
、廴切蔚慕瞧椒志畫法與角平分線的畫法相同,可以用量角器畫,也可通過尺規作圖來畫.
。2)三角形的中線:在一個三角形中,連結一個頂點和它的對邊中點的線段叫做三角形的中線.注意:①三角形有三條中線,且它們相交三角形內部一點,交點叫重心.
、诋嬋切沃芯時只需連結頂點及對邊的中點即可.
(3)三角形的高線:從三角形一個頂點向它的對邊作垂線,頂點和垂足間的線段叫做三角形的高。注意:
、偃切蔚娜龡l高是線段
②畫三角形的高時,只需要三角形一個頂點向對邊或對邊的延長線作垂線,連結頂點與垂足的線段就是該邊上的高.
二、三角形三邊關系定理
、偃切蝺蛇呏痛笥诘谌,故同時滿足△ABC三邊長a、b、c的不等式有:a+b>c,b+c>a,c+a>b.
②三角形兩邊之差小于第三邊,故同時滿足△ABC三邊長a、b、c的不等式有:a>b-c,b>a-c,c>b-a.注意:已知兩邊可得第三邊的取值范圍是:兩邊之差<第三邊<兩邊之和
三、三角形的穩定性
三角形的三邊確定了,那么它的形狀、大小都確定了,三角形的這個性質就叫做三角形的穩定性.例如起重機的支架采用三角形結構就是這個道理.
四、三角形的內角
三角形內角和性質的推理方法有多種,常見的`有以下幾種:
結論1:三角形的內角和為180°.表示:在△ABC中,∠A+∠B+∠C=180°(1)構造平角
、倏蛇^A點作MN∥BC(如圖)
、诳蛇^一邊上任一點,作另兩邊的平行線(如圖)(2)構造鄰補角,可延長任一邊得鄰補角(如圖)
構造同旁內角,過任一頂點作射線平行于對邊(如圖)
結論2:在直角三角形中,兩個銳角互余.表示:如圖,在直角三角形ABC中,∠C=90°,那么∠A+∠B=90°
(因為∠A+∠B+∠C=180°)
注意:①在三角形中,已知兩個內角可以求出第三個內角
如:在△ABC中,∠C=180°-(∠A+∠B)
、谠谌切沃,已知三個內角和的比或它們之間的關系,求各內角.
如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度數.
五、三角形的外角
1.意義:三角形一邊與另一邊的延長線組成的角叫做三角形的外角.如圖,∠ACD為△ABC的一個外角,∠BCE也是△ABC的一個外角,這兩個角為對頂角,大小相等.2.性質:
①三角形的一個外角等于與它不相鄰的兩個內角的和. ②三角形的一個外角大于與它不相鄰的任何一個內角.如圖中,∠ACD=∠A+∠B , ∠ACD>∠A , ∠ACD>∠B. ③三角形的一個外角與與之相鄰的內角互補3.外角個數
過三角形的一個頂點有兩個外角,這兩個角為對頂角(相等),可見一個三角形共有六個外角.
六、多邊形
、俣噙呅蔚膶蔷n(n?3)
2條對角線
、趎邊形的內角和為(n-2)×180° ③多邊形的外角和為360°
初二數學的知識點總結 8
乘法與因式分解a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b||a|+|b|
|a-b||a|+|b|
|a|=ab
|a-b||a|-|b| -|a||a|
一元二次方程的解 -b+(b2-4ac)/2a
-b-(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a
X1*X2=c/a 注:韋達定理
判別式
b2-4ac=0 注:方程有兩個相等的實根
b2-4ac0 注:方程有兩個不等的實根
b2-4ac0 注:方程沒有實根,有共軛復數根
某些數列前n項和
1+2+3+4+5+6+7+8+9++n=n(n+1)/2 1+3+5+7+9+11+13+15++(2n-1)=n2
2+4+6+8+10+12+14++(2n)=n(n+1) 12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7++n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R
注:其中 R 表示三角形的'外接圓半徑
余弦定理 b2=a2+c2-2accosB
注:角B是邊a和邊c的夾角
初二數學的知識點總結 9
實數
無理數:無限不循環小數叫無理數
平方根:
、偃绻粋正數X的平方等于A,那么這個正數X就叫做A的算術平方根。
②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。
③一個正數有2個平方根/0的平方根為0/負數沒有平方根。
、芮笠粋數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:
①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。
、谡龜档牧⒎礁钦龜、0的立方根是0、負數的立方根是負數。
③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:
①實數分有理數和無理數。
、谠趯崝捣秶鷥,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。
、勖恳粋實數都可以在數軸上的一個點來表示。
相信通過上面的學習,同學們對實數知識點可以很好的掌握了,希望同學們在考試中取得好成績。
初中數學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合
三個規定:
①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
、巯笙薜囊幎ǎ河疑蠟榈谝幌笙、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的`掌握了吧,希望同學們都能考試成功。
初中數學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
初中數學知識點:點的坐標的性質
下面是對數學中點的坐標的性質知識學習,同學們認真看看哦。
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對于平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的。
初中數學知識點:因式分解的一般步驟
關于數學中因式分解的一般步驟內容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
初中數學知識點:因式分解
下面是對數學中因式分解內容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:
、俳Y果必須是整式
、诮Y果必須是積的形式
、劢Y果是等式
④因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:
、傧禂凳钦麛禃r取各項最大公約數。
②相同字母取最低次冪。
、巯禂底畲蠊s數與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。
、诖_定商式。
③公因式與商式寫成積的形式。
分解因式注意;
、俨粶蕘G字母
、诓粶蕘G常數項注意查項數
、垭p重括號化成單括號
、芙Y果按數單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
、奘醉椮撎柗爬ㄌ柾
、呃ㄌ杻韧愴椇喜ⅰ
通過上面對因式分解內容知識的講解學習,相信同學們已經能很好的掌握了吧,希望上面的內容給同學們的學習很好的幫助。
初二數學的知識點總結 10
1、正方形的概念
有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。
2、正方形的性質
(1)具有平行四邊形、矩形、菱形的一切性質;
(2)正方形的四個角都是直角,四條邊都相等;
(3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角;
(4)正方形是軸對稱圖形,有4條對稱軸;
(5)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的`小等腰直角三角形;
(6)正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。
3、正方形的判定
(1)判定一個四邊形是正方形的主要依據是定義,途徑有兩種:
先證它是矩形,再證有一組鄰邊相等。
先證它是菱形,再證有一個角是直角。
(2)判定一個四邊形為正方形的一般順序如下:
先證明它是平行四邊形;
再證明它是菱形(或矩形);
最后證明它是矩形(或菱形)。
初二數學的知識點總結 11
軸對稱
1.如果一個平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。
2.性質
(1)成軸對稱的兩個圖形全等;
(2)如果兩個圖形成軸對稱,那么對稱軸是對稱點連線的垂直平分線。
一次函數
(一)一次函數是函數中的一種,一般形如y=kx+b(k,b是常數,k≠0),其中x是自變量,y是因變量。特別地,當b=0時,y=kx+b(k為常數,k≠0),y叫做x的正比例函數。
(二)函數三要素
1.定義域:設x、y是兩個變量,變量x的變化范圍為D,如果對于每一個數x∈D,變量y遵照一定的法則總有確定的數值與之對應,則稱y是x的函數,記作y=f(x),x∈D,x稱為自變量,y稱為因變量,數集D稱為這個函數的定義域。
2.在函數經典定義中,因變量改變而改變的取值范圍叫做這個函數的值域,在函數現代定義中是指定義域中所有元素在某個對應法則下對應的所有的象所組成的集合。如:f(x)=x,那么f(x)的取值范圍就是函數f(x)的值域。
3.對應法則:一般地說,在函數記號y=f(x)中,“f”即表示對應法則,等式y=f(x)表明,對于定義域中的任意的x值,在對應法則“f”的作用下,即可得到值域中唯一y值。
(三)一次函數的表示方法
1.解析式法:用含自變量x的式子表示函數的方法叫做解析式法。
2.列表法:把一系列x的值對應的函數值y列成一個表來表示的函數關系的方法叫做列表法。
3.圖像法:用圖象來表示函數關系的方法叫做圖象法。
(四)一次函數的性質
1.y的變化值與對應的x的變化值成正比例,比值為k。即:y=kx+b(k≠0)(k不等于0,且k,b為常數)。
2.當x=0時,b為函數在y軸上的交點,坐標為(0,b)。當y=0時,該函數圖象在x軸上的交點坐標為(-b/k,0)。
3.k為一次函數y=kx+b的斜率,k=tanθ(角θ為一次函數圖象與x軸正方向夾角,θ≠90°)。
4.當b=0時(即y=kx),一次函數圖象變為正比例函數,正比例函數是特殊的一次函數。
5.函數圖象性質:當k相同,且b不相等,圖像平行;當k不同,且b相等,圖象相交于Y軸;當k互為負倒數時,兩直線垂直。
6.平移時:上加下減在末尾,左加右減在中間。
直角三角形
1.勾股定理及其逆定理
定理:直角三角形的兩條直角邊的等于的平方。
逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形。
2.含30°的直角三角形的邊的性質
定理:在直角三角形中,如果一個銳角等于30°,那么等于的一半。
3.直角三角形斜邊上的中線等于斜邊的一半。
要點詮釋:
①勾股定理的逆定理在語言敘述的時候一定要注意,不能說成“兩條邊的平方和等于斜邊的平方”,應該說成“三角形兩邊的平方和等于第三邊的平方”。
②直角三角形的全等判定方法,HL還有SSS,SAS,ASA,AAS,一共有5種判定方法。
圖形的平移與旋轉
1、平移,是指在同一平面內,將一個圖形上的所有點都按照某個直線方向做相同距離的移動,這樣的圖形運動叫做圖形的平移運動,簡稱平移。
2、平移性質
(1)圖形平移前后的形狀和大小沒有變化,只是位置發生變化。
(2)圖形平移后,對應點連成的線段平行(或在同一直線上)且相等。
拓展閱讀:初中數學提高解題速度的方法
認真仔細審題
對于一道具體的習題,解題時最重要的環節是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應特別注意每一句話的內在涵義,并從中找出隱含條件。
有些學生沒有養成讀題、思考的習慣,心里著急,匆匆一看,就開始解題,結果常常是漏掉了一些信息,花了很長時間解不出來,還找不到原因,想快卻慢了。所以,在實際解題時,應特別注意,審題要認真、仔細。
做好歸納總結
在解過一定數量的習題之后,對所涉及到的知識、解題方法進行歸納總結,以便使解題思路更為清晰,就能達到舉一反三的效果,對于類似的`習題一目了然,可以節約大量的解題時間。
熟悉習題內容
解題、做練習只是學習過程中的一個環節,而不是學習的全部,你不能為解題而解題。解題時,我們的概念越清晰,對公式、定理和規則越熟悉,解題速度就越快。
因此,我們在解題之前,應通過閱讀教科書和做簡單的練習,先熟悉、記憶和辨別這些基本內容,正確理解其涵義的本質,接著馬上就做后面所配的練習,一刻也不要停留。
學會主動畫圖
畫圖是一個翻譯的過程,把解題時的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關系就變得一目了然。尤其是對于幾何題,包括解析幾何題,若不會畫圖,有時簡直是無從下手。
因此,牢記各種題型的基本作圖方法,牢記各種函數的圖像和意義及演變過程和條件,對于提高解題速度非常重要。
逐步增加難度
人們認識事物的過程都是從簡單到復雜。簡單的問題解多了,從而使概念清晰了,對公式、定理以及解題步驟熟悉了,解題時就會形成跳躍性思維,解題的速度就會大大提高。
我們在學習時,應根據自己的能力,先去解那些看似簡單,卻很重要的習題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會達到事半功倍的效果。
初二數學的知識點總結 12
一、 在平面內,確定物體的位置一般需要兩個數據。
二、平面直角坐標系及有關概念
1、平面直角坐標系
在平面內,兩條互相垂直且有公共原點的數軸,組成平面直角坐標系。其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。
2、為了便于描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(坐標軸上的點),不屬于任何一個象限。
3、點的坐標的概念
對于平面內任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應的數a,b分別叫做點P的橫坐標、縱坐標,有序數對(a,b)叫做點P的坐標。
點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在后,中間有,分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當 時,(a,b)和(b,a)是兩個不同點的坐標。
平面內點的與有序實數對是一一對應的。
4、不同位置的點的坐標的特征
(1)、各象限內點的坐標的特征
點P(x,y)在第一象限:x0
點P(x,y)在第二象限:x0
點P(x,y)在第三象限:x0
點P(x,y)在第四象限:x0
(2)、坐標軸上的點的特征
點P(x,y)在x軸上,y=0 ,x為任意實數
點P(x,y)在y軸上,x=0 ,y為任意實數
點P(x,y)既在x軸上,又在y軸上, x,y同時為零,即點P坐標為(0,0)即原點
(3)、兩條坐標軸夾角平分線上點的坐標的特征
點P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等
點P(x,y)在第二、四象限夾角平分線上,x與y互為相反數
(4)、和坐標軸平行的直線上點的坐標的特征
位于平行于x軸的'直線上的各點的縱坐標相同。
位于平行于y軸的直線上的各點的橫坐標相同。
(5)、關于x軸、y軸或原點對稱的點的坐標的特征
點P與點p關于x軸對稱 橫坐標相等,縱坐標互為相反數,即點P(x,y)關于x軸的對稱點為P(x,-y)
點P與點p關于y軸對稱 縱坐標相等,橫坐標互為相反數,即點P(x,y)關于y軸的對稱點為P(-x,y)
點P與點p關于原點對稱 橫、縱坐標均互為相反數,即點P(x,y)關于原點的對稱點為P(-x,-y)
(6)、點到坐標軸及原點的距離
點P(x,y)到坐標軸及原點的距離:
(1)點P(x,y)到x軸的距離等于|y|;
(2)點P(x,y)到y軸的距離等于|x|;
(3)點P(x,y)到原點的距離等于根號x*x+y*y
三、坐標變化與圖形變化的規律:
坐標(x,y)的變化
圖形的變化
x a或y a
被橫向或縱向拉長(壓縮)為原來的a倍
x a,y a
放大(縮小)為原來的a倍
x (-1)或y (-1)
關于y軸或x軸對稱
x (-1),y (-1)
關于原點成中心對稱
x +a或y+ a
沿x軸或y軸平移a個單位
x +a,y+ a
沿x軸平移a個單位,再沿y軸平移a個單
初二數學的知識點總結 13
一、實數的概念及分類
1、實數的分類
一是分類是:正數、負數、0;
另一種分類是:有理數、無理數
將兩種分類進行組合:負有理數,負無理數,0,正有理數,正無理數
2、無理數:無限不循環小數叫做無理數。
在理解無理數時,要抓住“無限不循環”這一時之,歸納起來有四類:
(1)開方開不盡的數,如等;
(2)有特定意義的數,如圓周率π,或化簡后含有π的數,如+8等;
(3)有特定結構的.數,如0.1010010001…等;
(4)某些三角函數值,如sin60o等
二、實數的倒數、相反數和絕對值
1、相反數
實數與它的相反數時一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關于原點對稱,如果a與b互為相反數,則有a+b=0,a=—b,反之亦成立。
2、絕對值
在數軸上,一個數所對應的點與原點的距離,叫做該數的絕對值。(|a|≥0)。零的絕對值是它本身,也可看成它的相反數,若|a|=a,則a≥0;若|a|=-a,則a≤0。
3、倒數
如果a與b互為倒數,則有ab=1,反之亦成立。倒數等于本身的數是1和-1。零沒有倒數。
4、數軸
規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意上述規定的三要素缺一不可)。
解題時要真正掌握數形結合的思想,理解實數與數軸的點是一一對應的,并能靈活運用。
初二數學的知識點總結 14
一、全等三角形
1.定義:能夠完全重合的兩個三角形叫做全等三角形。
理解:
①全等三角形形狀與大小完全相等,與位置無關;
、谝粋三角形經過平移、翻折、旋轉可以得到它的全等形;
、廴切稳炔灰蛭恢冒l生變化而改變。
2、全等三角形有哪些性質
。1)全等三角形的對應邊相等、對應角相等。
理解:
、匍L邊對長邊,短邊對短邊;最大角對最大角,最小角對最小角;
、趯堑膶厼閷,對應邊對的角為對應角。
。2)全等三角形的周長相等、面積相等。
。3)全等三角形的對應邊上的對應中線、角平分線、高線分別相等。
3、全等三角形的判定
邊邊邊:三邊對應相等的兩個三角形全等(可簡寫成“SSS”)
1、性質:角的平分線上的點到角的'兩邊的距離相等.
2、判定:角的內部到角的兩邊的距離相等的點在角的平分線上。
二、學習全等三角形應注意以下幾個問題:
(1)要正確區分“對應邊”與“對邊”,“對應角”與“對角”的不同含義;
。2)表示兩個三角形全等時,表示對應頂點的字母要寫在對應的位置上;
。3)“有三個角對應相等”或“有兩邊及其中一邊的對角對應相等”的兩個三角形不一定全等;
。4)時刻注意圖形中的隱含條件,如“公共角” 、“公共邊”、“對頂角”
。5)截長補短法證三角形全等。
初二數學的知識點總結 15
軸對稱圖形
1.把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關于這條直線(成軸)對稱。
2.把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那么就說這兩個圖關于這條直線對稱。這條直線叫做對稱軸。折疊后重合的點是對應點,叫做對稱點3.軸對稱與軸對稱圖形的性質
①關于某直線對稱的兩個圖形是全等形。
、谌绻麅蓚圖形關于某條直線對稱,那么對稱軸是任何一對對應點所連線段的垂直平分線。
③軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
、苋绻麅蓚圖形的對應點連線被同條直線垂直平分,那么這兩個圖形關于這條直線對稱。
、輧蓚圖形關于某條直線成軸對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上。
全等三角形
1、全等三角形的性質:全等三角形對應邊相等、對應角相等。
2、全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對邊對應相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)。
3、角平分線的性質:角平分線平分這個角,角平分線上的點到角兩邊的距離相等
4、角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。
5、證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:
、佟⒋_定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系)
②、回顧三角形判定,搞清我們還需要什么
、、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題)。
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
3、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4、中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
7、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
8、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
9、多邊形的'外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。
12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,13、公式與性質:
、湃切蔚膬冉呛停喝切蔚膬冉呛蜑180°
⑵三角形外角的性質:
性質1:三角形的一個外角等于和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大于任何一個和它不相鄰的內角。
、嵌噙呅蝺冉呛凸剑哼呅蔚膬冉呛偷扔凇180°
、榷噙呅蔚耐饨呛停憾噙呅蔚耐饨呛蜑360°。
、啥噙呅螌蔷的條數:
、購倪呅蔚囊粋頂點出發可以引條對角線,把多邊形分成個三角形。
、谶呅喂灿袟l對角線。
等腰梯形
1、等腰梯形的定義
兩腰相等的梯形叫做等腰梯形。
2、等腰梯形的性質
(1)等腰梯形的兩腰相等,兩底平行。
(2)等腰梯形同一底上的兩個角相等,同一腰上的兩個角互補。
(3)等腰梯形的對角線相等。
(4)等腰梯形是軸對稱圖形,它只有一條對稱軸,即兩底的垂直平分線。
3、等腰梯形的判定
(1)定義:兩腰相等的梯形是等腰梯形
(2)定理:在同一底上的兩個角相等的梯形是等腰梯形
(3)對角線相等的梯形是等腰梯形。(選擇題和填空題可直接用)
菱形
1、菱形的定義
有一組鄰邊相等的平行四邊形叫做菱形
2、菱形的性質
(1)菱形的四條邊相等,對邊平行
(2)菱形的相鄰的角互補,對角相等
(3)菱形的對角線互相垂直平分,并且每一條對角線平分一組對角
(4)菱形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(對稱中心到菱形四條邊的距離相等);對稱軸有兩條,是對角線所在的直線。
3、菱形的判定
(1)定義:有一組鄰邊相等的平行四邊形是菱形
(2)定理1:四邊都相等的四邊形是菱形
(3)定理2:對角線互相垂直的平行四邊形是菱形
4、菱形的面積
S菱形=底邊長×高=兩條對角線乘積的一半
【初二數學的知識點總結】相關文章:
初二數學的知識點總結06-26
初二數學知識點總結06-21
初二數學下冊知識點總結11-11
初二數學全套知識點總結01-30
初二數學重要知識點總結08-15
初二數學上冊知識點總結(經典)10-21
初二數學上冊知識點總結01-05
初二數學下冊知識點總結最新06-18
初二數學基礎知識點歸納總結12-26
初二數學知識點總結(20篇)01-06