小學數學知識點總結

時間:2022-12-12 09:30:03 知識點總結 我要投稿

小學數學知識點總結集合15篇

  總結是指社會團體、企業單位和個人在自身的某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而肯定成績,得到經驗,找出差距,得出教訓和一些規律性認識的一種書面材料,它可以幫助我們有尋找學習和工作中的規律,因此好好準備一份總結吧。但是卻發現不知道該寫些什么,以下是小編收集整理的小學數學知識點總結,歡迎大家借鑒與參考,希望對大家有所幫助。

小學數學知識點總結集合15篇

小學數學知識點總結1

  加法交換律a+b=b+a

  結合律(a+b)+c=a+(b+c)

  減法性質a-b-c=a-(b+c)

  a-(b-c)=a-b+c

  乘法交換律a×b=b×a

  結合律(a×b)×c=a×(b×c)

  分配律(a+b)×c=a×c+b×c

  除法性質a÷(b×c)=a÷b÷c

  a÷(b÷c)=a÷b×c

  (a+b)÷c=a÷c+b÷c

  (a-b)÷c=a÷c-b÷c

  商不變性質m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)

  ■積的變化規律:在乘法中,一個因數不變,另一個因數擴大(或縮小)若干倍,積也擴大(或縮小)相同的倍數.

  推廣:一個因數擴大A倍,另一個因數擴大B倍,積擴大AB倍.

  一個因數縮小A倍,另一個因數縮小B倍,積縮小AB倍.

  ■商不變規律:在除法中,被除數和除數同時擴大(或縮小)相同的倍數,商不變.

  推廣:被除數擴大(或縮小)A倍,除數不變,商也擴大(或縮小)A倍.

  被除數不變,除數擴大(或縮小)A倍,商反而縮小(或擴大)A倍.

  ■利用積的變化規律和商不變規律性質可以使一些計算簡便.但在有余數的除法中要注意余數.

  如:8500÷200=可以把被除數、除數同時縮小100倍來除,即85÷2= ,商不變,但此時的余數1是被縮小100被后的,所以還原成原來的余數應該是100.

小學數學知識點總結2

  (一)數與計算

  (1)20以內數的認識。加法和減法。數數。數的組成、順序、大小、讀法和寫法。加法和減法。連加、連減和加減混合式題

  (2)100以內數的認識。加法和減法。數數。個位、十位。數的順序、大小、讀法和寫法。兩位數加、減整十數和兩位數加、減一位數的口算。兩步計算的加減式題。

  (二)量與計量

  鐘面的認識(整時)。人民幣的認識和簡單計算。

  (三)幾何初步知識

  長方體、正方體、圓柱和球的直觀認識。

  長方形、正方形、三角形和圓的直觀認識。

  (四)應用題

  比較容易的加法、減法一步計算的應用題。多和少的應用題(抓有效信息的能力)

  (五)實踐活動

  選擇與生活密切聯系的內容。例如根據本班男、女生人數,每組人數分布情況,想到哪些數學問題。

小學數學知識點總結3

  購物

  【知識框架】

  購物

  1、買文具---(小面額的人民幣)

  2、買衣服---(大面額的人民幣)

  3、小小商店---(進行有關錢款的簡單計算)

  【知識點】

  買文具(小面額的人民幣)

  1、認識各種小面額的人民幣。

  2、體會小面額人民幣之間的換算關系。

  3、從實際問題中理解“付出的錢、應付的錢、應找回的錢”三者之間的關系。

  4、在購物情景中進行有關錢款的簡單計算。

  買衣服(大面額的人民幣)

  1、讓學生在活動中認識大面額的人民幣,能從相同點和不同點上辨認。

  2、會計算大面額人民幣之間的換算。

  3、在購物活動中體會大面額人民幣的作用,運用人民幣的兌換知識,初步掌握付錢的方法。

  小小商店(進行有關錢款的簡單計算)

  1.在購物情景中會進行有關錢款的簡單計算。

  2.通過購物中的活動,了解付費的方式是多樣化的。

  3.通過購物的活動,鞏固復習100以內的加減法計算。

  4.購物中能解決一些簡單的實際問題。

小學數學知識點總結4

  人教版小學數學知識點大全基本概念

  第一章數和數的運算一、概念(一)整數

  1、整數的意義

  自然數和0都是整數。

  2、自然數

  我們在數物體的時候,用來表示物體個數的1,2,3??叫做自然數。

  一個物體也沒有,用0表示。0也是自然數。

  3、計數單位

  一(個)、十、百、千、萬、十萬、百萬、千萬、億??都是計數單位。其中“一”是計數的基本單位。

  10個1是10,10個10是100??每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。

  4、數位

  計數單位按照一定的順序排列起來,它們所占的位置叫做數位。

  5、整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個“億”或“萬”字。每一級末尾的0都不讀出來,其它數位連續有幾個0都只讀一個零。

  6、整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。

  7、一個較大的多位數,為了讀寫方便,常常把它改寫成用“萬”或“億”作單位的數。有時還可以根據需要,省略這個數某一位后面的數,寫成近似數。

  ?準確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫后的數是原數的準確數。例如把1254300000改寫成以萬做單位的數是125430萬;改寫成以億做單位的數12.543億。

  ?近似數:根據實際需要,我們還可以把一個較大的數,省略某一位后面的尾數,用一個近似數來表示。例如:1302490015省略億后面的尾數是13億。?四舍五入法:求近似數,看尾數最高位上的數是幾,比5小就舍去,是5或大于5舍去尾數向前一位進1。這種求近似數的方法就叫做四舍五入法。

  8、整數大小的比較:位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。以此類推。(二)小數

  1、小數的意義

  把整數1平均分成10份、100份、1000份??得到的十分之幾、百分之幾、千分之幾??可以用小數表示。如1/10記作0.1,7/100記作0.07。

  一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾??

  一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。

  小數點右邊第一位叫十分位,計數單位是十分之一(0.1);第二位叫百分位,計數單位是百分之一(0.01)??小數部分最大的計數單位是十分之一,沒有最小的計數單位。小數部分有幾個數位,就叫做幾位小數。如0.36是兩位小數,3.066是三位小數

  在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位“十分之一”和整數部分的最低單位“一”之間的進率也是10。

  2、小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作“點”,小數部分從左向右順次讀出每一位數位上的數字。

  3、小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。

  4、比較小數的大小:先看它們的整數部分,,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大??

  5、小數的分類

  ?純小數:整數部分是零的小數,叫做純小數。例如:0.25 、 0.368都是純小數。

  ?帶小數:整數部分不是零的小數,叫做帶小數。例如:3.25 、 5.26都是帶小數。

  ?有限小數:小數部分的數位是有限的小數,叫做有限小數。例如:41.7 、 25.3 、 0.23都是有限小數。

  ?無限小數:小數部分的數位是無限的小數,叫做無限小數。例如:4.33 ?? 3.1415926 ??

  ?無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。例如:∏

  ?循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。例如:3.555 ?? 0.0333 ?? 12.109109 ??

  一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。例如:3.99 ??的循環節是“ 9 ”,0.5454 ??的循環節是“ 54 ” 。

  ?純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。例如:3.111 ?? 0.5656 ??

  ?混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 ?? 0.03333 ??

  寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,并在這個循環節的首、末位數字上各點一個圓點。如果循環節只有一個數字,就只在它的上面點一個點。(三)分數

  1、分數的意義

  把單位“1”平均分成若干份,表示這樣的一份或者幾份的數叫做分數。

  在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位“1”平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。

  把單位“1”平均分成若干份,表示其中的一份的數,叫做分數單位。

  2、分數的讀法:讀分數時,先讀分母再讀“分之”然后讀分子,分子和分母按照整數的讀法來讀。

  3、分數的寫法:先寫分數線,再寫分母,最后寫分子,按照整數的寫法來寫。

  4、比較分數的大小:

  ?分母相同的分數,分子大的那個分數就大。

  ?分子相同的分數,分母小的那個分數就大。

  ?分母和分子都不同的分數,通常是先通分,轉化成通分母的分數,再比較大小。

  ?如果被比較的分數是帶分數,先要比較它們的整數部分,整數部分大的那個帶分數就大;如果整數部分相同,再比較它們的分數部分,分數部分大的那個帶分數就大。

  5、分數的分類

  按照分子、分母和整數部分的不同情況,可以分成:真分數、假分數、帶分數

  ?真分數:分子比分母小的分數叫做真分數。真分數小于1。

  ?假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大于或等于1。

  ?帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。

  6、分數和除法的關系及分數的基本性質

  ?除法是一種運算,有運算符號;分數是一種數。因此,一般應敘述為被除數相當于分子,而不能說成被除數就是分子。?由于分數和除法有密切的關系,根據除法中“商不變”的性質可得出分數的基本性質。

  ?分數的分子和分母都乘以或者除以相同的數(0除外),分數的大小不變,這叫做分數的基本性質,它是約分和通分的依據。

  7、約分和通分

  ?分子、分母是互質數的分數,叫做最簡分數。

  ?把一個分數化成同它相等但分子、分母都比較小的分數,叫做約分。

  ?約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。

  ?把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。

  ?通分的方法:先求出原來幾個分母的最小公倍數,然后把各分數化成用這個最小公倍數作分母的分數。

  8、倒數

  ?乘積是1的兩個數互為倒數。

  ?求一個數(0除外)的倒數,只要把這個數的分子、分母調換位置。

  ? 1的倒數是1,0沒有倒數(四)百分數

  1、百分數的意義

  表示一個數是另一個數的百分之幾的數叫做百分數,也叫做百分率或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。

  2、百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。

  3、百分數的寫法:百分數通常不寫成分數形式,而在原來的分子后面加上百分號“%”來表示。

  4、百分數與折數、成數的互化:

  例如:三折就是30%,七五折就是75%,成數就是十分之幾,如一成就是牐闖砂俜質褪?0%,則六成五就是65%。

  5、納稅和利息:

  稅率:應納稅額與各種收入的比率。

  利率:利息與本金的百分率。由銀行規定按年或按月計算。

  利息的計算公式:利息=本金×利率×時間

  6、百分數與分數的區別主要有以下三點:

  ?意義不同。百分數是“表示一個數是另一個數的百分之幾的數。”它只能表示兩數之間的倍數關系,不能表示某一具體數量。如:可以說1米是5米的20%,不可以說“一段繩子長為20%米。”因此,百分數后面不能帶單位名稱。分數是“把單位‘1’平均分成若干份,表示這樣一份或幾份的數”。分數不僅可以表示兩數之間的倍數關系,如:甲數是3,乙數是4,甲數是乙數的?;還可以表示一定的數量,如:犌Э恕米等。

  ?應用范圍不同。百分數在生產、工作和生活中,常用于調查、統計、分析與比較。而分數常常是在測量、計算中,得不到整數結果時使用。

  ?書寫形式不同。百分數通常不寫成分數形式,而采用百分號“%”來表示。如:百分之四十五,寫作:45%;百分數的分母固定為100,因此,不論百分數的分子、分母之間有多少個公約數,都不約分;百分數的分子可以是自然數,也可以是小數。而分數的分子只能是自然數,它的表示形式有:真分數、假分數、帶分數,計算結果不是最簡分數的一般要通過約分化成最簡分數,是假分數的要化成帶分數。

  7、數的互化

  ?小數化成分數:原來有幾位小數,就在1的后面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。

  ?分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。

  ?一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5以外的'質因數,這個分數就不能化成有限小數。

  ?小數化成百分數:只要把小數點向右移動兩位,同時在后面添上百分號。

  ?百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。

  ?分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。

  ?百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。(五)數的整除

  1、整除的意義

  整數a除以整數b(b ≠ 0),除得的商是整數而沒有余數,我們就說a能被b整除,或者說b能整除a 。

  除盡的意義甲數除以乙數,所得的商是整數或有限小數而余數也為0時,我們就說甲數能被乙數除盡,(或者說乙數能除盡甲數)這里的甲數、乙數可以是自然數,也可以是小數(乙數不能為0)。

  2、約數和倍數

  ?如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就(來自: :小學數學總結)叫做a的約數(或a的因數)。倍數和約數是相互依存的。

  ?一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它本身。

  ?一個數的倍數的個數是無限的,其中最小的倍數是它本身,沒有最大的倍數。

  3、奇數和偶數

  ?自然數按能否被2整除的特征可分為奇數和偶數。

  ①能被2整除的數叫做偶數。0也是偶數。

  ②不能被2整除的數叫做奇數。

  ?奇數和偶數的運算性質:

  ①相鄰兩個自然數之和是奇數,之積是偶數。

  ②奇數+奇數=偶數,奇數+偶數=奇數,偶數+偶數=偶數;奇數-奇數=偶數,

  奇數-偶數=奇數,偶數-奇數=奇數,偶數-偶數=偶數;奇數×奇數=奇數,奇數×偶數=偶數,偶數×偶數=偶數。

  4、整除的特征

  ?個位上是0、2、4、6、8的數,都能被2整除。

  ?個位上是0或5的數,都能被5整除。

  ?一個數的各位上的數的和能被3整除,這個數就能被3整除。

  ?一個數各位數上的和能被9整除,這個數就能被9整除。

  ?能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。

  ?一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。

  ?一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。

  5、質數和合數

  ?一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

  ?一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如4、6、8、9、12都是合數。

  ? 1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其約數的個數的不同分類,可分為質數、合數和1。

  6、分解質因數

  ?質因數

  每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5叫做15的質因數。

  ?分解質因數

  把一個合數用質因數相乘的形式表示出來,叫做分解質因數。通常用短除法來分解質因數。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。

  ?公因(約)數

  幾個數公有的因數叫做這幾個數的公因數。其中最大的一個叫這幾個數的最大公因數。

  公因數只有1的兩個數,叫做互質數。成互質關系的兩個數,有下列幾種情況:①和任何自然數互質;

  ②相鄰的兩個自然數互質;

  ③當合數不是質數的倍數時,這個合數和這個質數互質;

  ④兩個合數的公約數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。

  如果較小數是較大數的約數,那么較小數就是這兩個數的最大公約數。

  如果兩個數是互質數,它們的最大公約數就是1。

  ?公倍數

  ①幾個數公有的倍數叫做這幾個數的公倍數。其中最大的一個叫這幾個數的最大公倍數。

  求幾個數的最大公約數的方法是:先用這幾個數的公約數連續去除,一直除到所得的商只有公約數1為止,然后把所有的除數連乘求積,這個積就是這幾個數的的最大公約數。

  ②幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數。

  求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然后把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。

  如果較大數是較小數的倍數,那么較大數就是這兩個數的最小公倍數。

  如果兩個數是互質數,那么這兩個數的積就是它們的最小公倍數。

  幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。二、性質和規律(一)商不變的規律

  商不變的規律:在除法里,被除數和除數同時擴大或者同時縮小相同的倍,商不變。(二)小數的性質

  小數的性質:在小數的末尾添上零或者去掉零小數的大小不變。(三)小數點位置的移動引起小數大小的變化

  1、小數點向右移動一位,原來的數就擴大10倍;小數點向右移動兩位,原來的數就擴大100倍;小數點向右移動三位,原來的數就擴大1000倍??

  2、小數點向左移動一位,原來的數就縮小10倍;小數點向左移動兩位,原來的數就縮小100倍;小數點向左移動三位,原來的數就縮小1000倍??

  3、小數點向左移或者向右移位數不夠時,要用“0"補足位。(四)分數的基本性質

  分數的基本性質:分數的分子和分母都乘以或者除以相同的數(零除外),分數的大小不變。(五)分數與除法的關系

  1、被除數÷除數=被除數/除數

  2、因為零不能作除數,所以分數的分母不能為零。

  3、被除數相當于分子,除數相當于分母。三、運算法則(一)整數四則運算的法則

  1、整數加法:

  把兩個數合并成一個數的運算叫做加法。

  在加法里,相加的數叫做加數,加得的數叫做和。加數是部分數,和是總數。

  加數+加數=和一個加數=和-另一個加數

  2、整數減法:

  已知兩個加數的和與其中的一個加數,求另一個加數的運算叫做減法。

  在減法里,已知的和叫做被減數,已知的加數叫做減數,未知的加數叫做差。被減數是總數,減數和差分別是部分數。

  加法和減法互為逆運算。

  3、整數乘法:

  求幾個相同加數的和的簡便運算叫做乘法。

  在乘法里,相同的加數和相同加數的個數都叫做因數。相同加數的和叫做積。

  在乘法里,0和任何數相乘都得0.1和任何數相乘都的任何數。

  一個因數×一個因數=積一個因數=積÷另一個因數

  4、整數除法:

  已知兩個因數的積與其中一個因數,求另一個因數的運算叫做除法。

  在除法里,已知的積叫做被除數,已知的一個因數叫做除數,所求的因數叫做商。

  乘法和除法互為逆運算。

  在除法里,0不能做除數。因為0和任何數相乘都得0,所以任何一個數除以0,均得不到一個確定的商。

  被除數÷除數=商除數=被除數÷商被除數=商×除數

  5、乘方:

  求幾個相同因數的積的運算叫做乘方。例如3 × 3 =32(二)小數四則運算

  1、小數加法:

  小數加法的意義與整數加法的意義相同。是把兩個數合并成一個數的運算。

小學數學知識點總結5

  一、學習目標:

  1.知道生活中有比萬大的數;認識計數單位“萬、十萬、百萬、千萬和億”,類推每相鄰兩個計數單位之間的關系,知道數級、數位;

  2使學生認識射線,直線,能識別射線、直線和線段三個概念之間的聯系和區別;認識角和角的表示方法,知道角的各部分名稱;

  3,在理解的基礎上,掌握整數乘法的口算方法;培養類推遷移的能力和口算的能力;

  4.結合生活情境,通過自主探究活動,初步認識平行線、垂線;獨立思考能力與合作精神得到和諧發展;

  5.在理解的基礎上,掌握用整十數除商是一位數的口算方法;培養類推遷移的能力和抽象概括的能力。

  二、學習難點:

  1.認識計數單位“萬、十萬、百萬、千萬和億”;掌握每相鄰兩個計數單位之間的關系;

  2.角的意義;射線、直線和線段三者之間的關系;

  3.掌握整數乘法的口算方法;培養學生養成認真思考的良好學習習慣;

  4.初步認識平行線與垂線;理解永不相交的含義;

  5.掌握用整十數除商是一位數的口算方法;培養學生養成認真計算的良好學習習慣。

  三、知識點概括總結:

  1.億以內的數的認識:

  十萬:10個一萬;

  一百萬:10個十萬;

  一千萬:10個一百萬;

  一億:10個一千萬。

  2.數級:數級是為便于人們記讀阿拉伯數的一種識讀方法,在位值制(數位順序)的基礎上,以三位或四位分級的原則,把數讀,寫出來。

  通常在阿拉伯數的書寫上,以小數點或者空格作為各個數級的標識,從右向左把數分開。

  3.數級分類:

  (1)四位分級法:即以四位數為一個數級的分級方法。

  我國讀數的習慣,就是按這種方法讀的。如:萬(數字后面4個0)、億(數字后面8個0)、兆(數字后面12個0,這是中法計數)……。這些級分別叫做個級,萬級,億級……。

  (2)三位分級法:即以三位數為一個數級的分級方法。

  這西方的分級方法,這種分級方法也是國際通行的分級方法。如:千,數字后面3個0、百萬,數字后面6個0、十億,數字后面9個0……。

  4.數位:數位是指寫數時,把數字并列排成橫列,一個數字占有一個位置,這些位置,都叫做數位。

  從右端算起,第一位是“個位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“萬位”,等等。

  這就說明計數單位和數位的概念是不同的。

  5.數的產生:

  阿拉伯數字的由來:古代印度人創造了阿拉伯數字后,大約到了公元7世紀的時候,這些數字傳到了阿拉伯地區。到13世紀時,意大利數學家斐波那契寫出了《算盤書》,在這本書里,他對阿拉伯數字做了詳細的介紹。后來,這些數字又從阿拉伯地區傳到了歐洲,歐洲人只知道這些數字是從阿拉伯地區傳入的,所以便把這些數字叫做阿拉伯數字。以后,這些數字又從歐洲傳到世界各國。

  阿拉伯數字傳入我國,大約是13到14世紀。由于我國古代有一種數字叫“籌碼”,寫起來比較方便,所以阿拉伯數字當時在我國沒有得到及時的推廣運用。本世紀初,隨著我國對外國數學成就的吸收和引進,阿拉伯數字在我國才開始慢慢使用,阿拉伯數字在我國推廣使用才有100多年的歷史。阿拉伯數字現在已成為人們學習、生活和交往中最常用的數字了。

小學數學知識點總結6

  1、已經學過的面積單位有平方厘米(cm2)、平方分米(dm2)、平方米(m2)、公頃、平方千米(km2)。

  2、(1)邊長是1厘米的正方形,面積是1平方厘米。

  (2)邊長是1分米的正方形,面積是1平方分米。

  (3)邊長是1米的正方形,面積是1平方米。

  (4)邊長是100米的正方形,面積是1公頃。1公頃=10000平方米

  測量土地的面積,可以用公頃作單位。

  例如:鳥巢的占地面積約1公頃。400跑道圍起來的部分的面積大約是1公頃。

  (5)邊長是1000米的正方形,面積是1平方千米。

  1平方千米=100公頃=1000000平方米

  我國陸地領土面積約為960萬平方千米。

  3、面積單位之間的換算:

  (1)首先要記住它們之間的進率:

  1平方千米=100公頃=1000000平方米

  1公頃=10000平方米

  1平方米=100平方分米

  1平方分米=100平方厘米

  1平方米=10000平方厘米

  (2)換算方法:

  ○1把高級單位化為低級單位,要用乘法計算,只要用高級單位前面的數去乘這兩個單位之間的進率。(即高化低,乘進率,小數點向右移,移幾位,看進率。)

  ○2把低級單位聚成高低級單位,要用除法計算,只要用低級單位前面的數去除以這兩個單位之間的進率。(即低化高,除以進率,小數點向左移,移幾位,看進率。)

  a、把公頃轉化為平方米,只要在公頃前面的數據后面直接添寫4個0。

  b、把平方米轉化為公頃,只要在平方米前面的數據后面直接去掉4個0。

  c、把平方千米轉化為公頃,只要在平方千米前面的數據后面直接添寫2個0。

  d、把平方千米轉化為平方米,只要在平方千米前面的數據后面直接添寫6個0。

  e、把平方米轉化為平方千米,只要在平方米前面的數據后面直接去掉6個0。

  4、填寫面積單位的規律:

  (1)國土面積、省份(含直轄市)面積、省會城市面積、州(市)面積、縣、鄉鎮面積、村委會、村莊面積、一般要用“平方千米”作單位。

  (2)公園、院(校)園、體育場(館)等,一般要用“公頃”作單位。

  (3)房屋(建筑)面積、教室面積、校園綠化面積等,一般要用“平方米”作單位。

小學數學知識點總結7

  1、乘法的含義

  乘法是求幾個相同加數連加的和的簡便算法。如:計算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.

  2、乘法算式的寫法和讀法

  ⑴連加算式改寫為乘法算式的方法。求幾個相同加數的和,可以用乘法計算。寫乘法算式時,可以用乘法計算。寫乘法算式時,可以先寫相同的加數,然后寫乘號,再寫相同加數的個數,最后寫等號與連加的和;也可以先寫相同加數的個數,然后寫乘號,再寫相同加數,最后寫等號與連加的和。

  如:4+4+4=12改寫成乘法算式是4×3=12或3×4=12

  4 × 3 = 12或3 × 4 = 12

  ⑵乘法算式的讀法。讀乘法算式時,要按照算式順序來讀。如:6×3=18讀作:“6乘3等于18”。

  3、乘法算式中各部分的名稱及實際表示的意義

  在乘法算式里,乘號前面的數和乘號后面的數都叫做“乘數”;等號后面的得數叫做“積”。

  4、乘法算式所表示的意義

  求幾個相同加數的和,用乘法計算比較簡單。一道乘法算式表示的就是幾個相同加數連加的和。如:4×5表示5個4相加或4個5相加。

  5、加法寫成乘法時,加法的和與乘法的積相同。

  6、乘法算式中,兩個乘數交換位置,積不變。

  7、算式各部分名稱及計算公式。

  乘法:乘數×乘數=積

  加法:加數+加數=和

  和—加數=加數

  減法:被減數—減數=差

  被減數=差+減數

  減數=被減數—差

  8、在9的乘法口訣里,幾乘9或9乘幾,都可看作幾十減幾,其中“幾”是指相同的數。

  如:1×9=10—1 9×5=50—5

  9、看圖,寫乘加、乘減算式時:

  乘加:先把相同的部分用乘法表示,再加上不相同的部分。

  乘減:先把每一份都算成相同的,寫成乘法,然后再把多算進去的減去。

  計算時,先算乘,再算加減。

  如:加法:3+3+3+3+2=14乘加:3×4+2=14乘減:3×5-1=14

  10、“幾和幾相加”與“幾個幾相加”有區別

  求幾和幾相加,用幾加幾;如:求4和3相加是多少?用加法(4+3=7)

  求幾個幾相加,用幾乘幾。

  如:求4個3相加是多少?(3+3+3+3=12或3×4=12或4×3=12)

  補充:幾和幾相乘,求積?用幾×幾.如:2和4相乘用2×4=8

  2個乘數都是幾,求積?用幾×幾。如:2個8相乘用8×8=64

  11、一個乘法算式可以表示兩個意義,如“4×2”既可以表示“4個2相加”,也可以表示“2個4相加”。

  “5+5+5”寫成乘法算式是(3×5=15)或(5×3=15),

  都可以用口訣(三五十五)來計算,表示(3)個(5)相加

  3×5=15讀作:3乘5等于15. 5×3=15讀作:5乘3等于15

  第五單元觀察物體

  1、從不同的角度觀察同一物體,所看到的物體的形狀一般是不同的;

  2、觀察物體時,要抓住物體的特征來判斷。

  3、觀察長方體的某一面,看到的可能是長方形或正方形。觀察正方形的某一面,看到的都是正方形

  4、觀察圓柱體,看到的可能是長方形或圓形。觀察球體,看到的都是圓形

  第七單元認識時間

  1、認識時間

  (1)鐘面上有時針和分針,走得快的,較長的是分針;走得慢的,較短的是時針;

  (2)鐘面上有12個大格,60個小格,1個大格有5個小格。時針走1大格是1小時,分針走1大格是5分鐘。

  (3)時針走1大格分針要走一圈,所以1時=60分;

  (4)半小時=30分,一刻鐘=15分鐘

  (5)時間的讀與寫:如3:30,可以讀作3時30分,也可以讀作3點半;8時零5分應寫作8:05。

  2、運用知識解決問題

  (1)要按著時間的先后順序安排事件,時間上不能重復。

  (2)問過幾分鐘后是幾時,先要讀出現在是幾時,再推算過幾分鐘后是幾時幾分。

  (3)時針和分針能形成直角的時刻是3時和9時。

  第八單元數學廣角-搭配

  1、用兩個不同的數字(0除外)組合時可以交換兩個數字的位置;用三個不同的數字組合成兩位數時,可以讓每個數字(0除外)作十位數字,其余的兩個數字依次和它組合。

  2、借用連線或者符號解答問題比較簡單。

  3、排列與順序有關,組合與順序無關。

小學數學知識點總結8

  通過欣賞和設計圖案的活動,進一步認識正方形、長方形、三角形和圓。

  小小運動會

  1、應用100以內的進位加法與退位減法的計算方法進行正確的計算。

  2、經歷與他人交流各自算法的過程,體會算法多樣化。

  3、體會長方形、正方形、三角形和圓在生活中的普遍存在。

  4、能利用圖形設計美麗的圖案。

小學數學知識點總結9

  1.認識人民幣的單位元、角、分和它們的十進關系,認識各種面值的人民幣,能看懂物品的單價,會進行簡單的計算。

  2.結合自己的生活經驗和已經掌握的100以內數的知識,學習、認識人民幣,一方面初步知道人民幣的基本知識和懂得如何使用人民幣,提高社會實踐能力;另一方面加深對100以內數的概念的理解。

  3.體會數概念與現實生活的密切聯系。

  4.認識各種面值的人民幣,并會進行簡單的計算。

  5.使學生認識人民幣的單位元、角、分,知道1元=10角,1角=10分。

  6.通過購物活動,使學生初步體會人民幣在社會生活、商品交換中的功能和作用并知道愛護人民幣。

小學數學知識點總結10

  ■用字母表示數

  用字母表示數是代數的基本特點.既簡單明了,又能表達數量關系的一般規律.

  ■用字母表示數的注意事項

  1、數字與字母、字母和字母相乘時,乘號可以簡寫成““或省略不寫.數與數相乘,乘號不能省略.

  2、當1和任何字母相乘時,“ 1”省略不寫.

  3、數字和字母相乘時,將數字寫在字母前面.

  ■含有字母的式子及求值

  求含有字母的式子的值或利用公式求值,應注意書寫格式

  ■等式與方程

  表示相等關系的式子叫等式.

  含有未知數的等式叫方程.

  判斷一個式子是不是方程應具備兩個條件:一是含有未知數;二是等式.所以,方程一定是等式,但等式不一定是方程.

  ■方程的解和解方程

  使方程左右兩邊相等的未知數的值,叫方程的解.

  求方程的解的過程叫解方程.

  ■在列方程解文字題時,如果題中要求的未知數已經用字母表示,解答時就不需要寫設,否則首先演將所求的未知數設為x.

  ■解方程的方法

  1、直接運用四則運算中各部分之間的關系去解.如x-8=12

  加數+加數=和一個加數=和-另一個加數

  被減數-減數=差減數=被減數-差被減數=差+減數

  被乘數×乘數=積一個因數=積÷另一個因數

  被除數÷除數=商除數=被除數÷商被除數=除數×商

  2、先把含有未知數x的項看作一個數,然后再解.如3x+20=41

  先把3x看作一個數,然后再解.

  3、按四則運算順序先計算,使方程變形,然后再解.如2.5×4-x=4.2,

  要先求出2.5×4的積,使方程變形為10-x=4.2,然后再解.

  4、利用運算定律或性質,使方程變形,然后再解.如:2.2x+7.8x=20

  先利用運算定律或性質使方程變形為(2.2+7.8)x=20,然后計算括號里面使方程變形為10x=20,最后再解.

小學數學知識點總結11

  1、上、下

  (1)在具體場景中理解上、下的含義及其相對性。

  (2)能比較準確地確定物體上下的方位,會用上、下描述物體的相對位置。

  (3)培養學生初步的空間觀念。

  2、前、后

  (1)在具體場景中理解前、后、最×的含義,以及前后的相對性。

  (2)能比較準確地確定物體前后的方位,會用前、后、最前、最后描述物體的相對位置。

  (3)培養學生初步的空間觀念。

  加減法

  (一)本單元知識網絡:

  (二)各課知識點:

  有幾枝鉛筆(加法的認識)

  知識點:

  1、初步了解加法的含義,會讀、寫加法算式,感悟把兩個數合并在一起求一共是多少,用加法計算;

  2、初步嘗試選擇恰當的方法進行5以內的加法口算。

  3、第一次出現了圖形應用題,要讓學生學會看圖形應用型題目,理解題目的意思。

  有幾輛車(初步認識加法的交換律)

  3、左、右(1)在具體場景中理解左、右的含義及其相對性。

  (2)能比較準確地確定物體左右的方位,會用左、右描述物體的位置。

  (3)培養學生初步的空間觀念。

  4、位置

  (1)明確“橫為行、豎為列”,并知道“第幾行第幾個”、“第幾組第幾個”的含義。

  (2)在具體情境中,會用2個數據(2個維度)描述人或物體的具體位置。

  (3)在具體情境中,能依據2個維度的數據找到人或物體的具體位置。

小學數學知識點總結12

  (一)口算除法

  1、整十數除整十數或幾百幾十的數的口算方法。

  (1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60

  (2)利用表內除法計算。利用除法運算的性質:將被除數和除數同時擴大或縮小相同的倍數,商不變。如:200÷50想20÷5=4,所以200÷50=4。

  2、兩位數除兩位數或三位數的估算方法:除法估算一般是把算式中不是整十數或幾百幾十的數用“四舍五入”法估算成整十數或幾百幾十的數,再進行口算。注意結果用“≈”號。

  (二)筆算除法

  1、除數是兩位數的筆算除法計算方法:從被除數的高位除起,先用除數試除被除數的前兩位,如果前兩位數比除數小,就看前三位。除到被除數的哪一位,商就寫在那一位的上面。每次除后余下的數必須比除數小。

  2、除數不是整十數的兩位數的除法的試商方法:如果除數是一個接近整十數的兩位數,就用“四舍五入”法把除數看做與它接近的整十數試商,也可以把除數看做與它接近的幾十五,再利用一位數的乘法直接確定商。

  3、商一位數:

  (1)兩位數除以整十數,如:62÷30;

  (2)三位數除以整十數,如:364÷70

  (3)兩位數除以兩位數,如:90÷29(把29看做30來試商)

  (4)三位數除以兩位數,如:324÷81(把81看做80來試商)

  (5)三位數除以兩位數,如:104÷26(把26看做25來試商)

  (6)同頭無除商八、九,如:404÷42(被除數的位和除數的位一樣,即“同頭”,被除數的前兩位除以除數不夠除,即“無除”,不是商8就是商9。)

  (7)除數折半商四五,如:252÷48(除數48的一半24,和被除數的前兩位25很接近,不是商4就是商5。)

  4、商兩位數:(三位數除以兩位數)

  (1)前兩位有余數,如:576÷18

  (2)前兩位沒有余數,如:930÷31

  5、判斷商的位數的方法:

  被除數的前兩位除以除數不夠除,商是一位數;被除數的前兩位除以除數夠除,商是兩位數。

  (三)商的變化規律

  1、商變化:

  (1)被除數不變,除數乘(或除以)幾(0除外),商就除以(或乘)相同的數。

  (2)除數不變,被除數乘(或除以)幾(0除外)商也乘(或除以)相同的數。

  2、商不變:被除數和除數同時乘(或除以)相同的數(0除外),商不變。

  (四)簡便計算:同時去掉同樣多的0,如9100÷700=91÷7=13

小學數學知識點總結13

  1、對長方形、正方形、三角形和圓的認識,能分辨出四種基本的圖形。

  2、學會觀察,能在生活中找出基本的形狀,會舉例。

  3、能區分出面和體的關系,體會“面在體上”。

  4、能找出一組圖形的規律。

  5、能在復雜的圖案中找出基本的圖形。

小學數學知識點總結14

  準備課

  1、數一數

  數數:數數時,按一定的順序數,從1開始,數到最后一個物體所對應的那個數,即最后數到幾,就是這種物體的總個數。

  2、比多少

  同樣多:當兩種物體一一對應后,都沒有剩余時,就說這兩種物體的數量同樣多。

  比多少:當兩種物體一一對應后,其中一種物體有剩余,有剩余的那種物體多,沒有剩余的那種物體少。

  比較兩種物體的多或少時,可以用一一對應的方法。

  位置

  1、認識上、下

  體會上、下的含義:從兩個物體的位置理解:上是指在高處的物體,下是指在低處的物體。

  2、認識前、后

  體會前、后的含義:一般指面對的方向就是前,背對的方向就是后。

  同一物體,相對于不同的參照物,前后位置關系也會發生變化。

  從而得出:確定兩個以上物體的前后位置關系時,要找準參照物,選擇的參照物不同,相對的前后位置關系也會發生變化。

  3、認識左、右

  以自己的左手、右手所在的位置為標準,確定左邊和右邊。右手所在的一邊為右邊,左手所在的一邊為左邊。

  要點提示:在確定左右時,除特殊要求,一般以觀察者的左右為準。

  學好數學的方法和技巧總結

  主動預習

  預習的目的是主動獲取新知識的過程,有助于調動學習積極主動性,新知識在未講解之前,認真閱讀教材,養成主動預習的習慣,是獲得數學知識的重要手段。

  因此,要注意培養自學能力,學會看書。如自學例題時,要弄清例題講的什么內容,告訴了哪些條件,求什么,書上怎么解答的,為什么要這樣解答,還有沒有新的解法,解題步驟是怎樣的。抓住這些重要問題,動腦思考,步步深入,學會運用已有的知識去獨立探究新的知識。

  讓數學課學與練結合

  在數學課上,光聽是沒用的。自己也要在草稿紙上練。當遇到不懂的難題時,一定要提出來,不能不懂裝懂,否則考試遇到類似的題目就可能不會做。聽老師講課時一定要全神貫注,要注意細節問題。應抓住聽課中的主要矛盾和問題,在聽講時盡可能與老師的講解同步思考,必要時做好筆記。每堂課結束以后應深思一下進行歸納,做到一課一得。

  單項式書寫格式

  1、數字寫在字母的前面,應省略乘。[5a]、[16xy]等。

  2、π是常數,因此也可以作為系數。它不是未知數。

  3、若系數是帶分數,要化成假分數。

  4、當一個單項式的系數是1或—1時,“1”通常省略不寫,如[(—1)ab]寫成[—ab]等。

  5、在單項式中字母不可以做分母,分子可以。

  6、單獨的數“0”的系數是零,次數也是零。

  7、常數的系數是它本身,次數為零。

  8、如果是分數的多項式,那么他的系數就是他的分數常數,次數為最高次冪。

小學數學知識點總結15

  測量

  1、在生活中,量比較短的物品,可以用(毫米、厘米、分米)做單位;量比較長的物體,常用(米)做單位;測量比較長的路程一般用(千米)做單位,千米也叫(公里)。

  2、1厘米的長度里有(10)小格,每小格的長度(相等),都是(1)毫米。

  3、1枚1分的硬幣、尺子、磁卡、小紐扣、鑰匙的厚度大約是1毫米。

  4、在計算長度時,只有相同的長度單位才能相加減。

  小技巧:換算長度單位時,把大單位換成小單位就在數字的末尾添加0(關系式中有幾個0,就添幾個0);把小單位換成大單位就在數字的末尾去掉0(關系式中有幾個0,就去掉幾個0)。

  5、長度單位的關系式有:(每兩個相鄰的長度單位之間的進率是10)

  ①進率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,

  10分米=1米,10厘米=1分米,10毫米=1厘米,

  ②進率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米

  ③進率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里

  6、當我們表示物體有多重時,通常要用到(質量單位)。在生活中,稱比較輕的物品的質量,可以用(克)做單位;稱一般物品的質量,常用(千克)做單位;計量較重的或大宗物品的質量,通常用(噸)做單位。

  小技巧:在“噸”與“千克”的換算中,把噸換算成千克,是在數字的末尾加上3個0;

  把千克換算成噸,是在數字的末尾去掉3個0。

  7、相鄰兩個質量單位進率是1000。

  1噸=1000千克1千克=1000克1000千克=1噸1000克=1千克

  萬以內的加法和減法

  1、認識整千數(記憶:10個一千是一萬)

  2、讀數和寫數(讀數時寫漢字寫數時寫阿拉伯數字)

  ①一個數的末尾不管有一個0或幾個0,這個0都不讀。

  ②一個數的中間有一個0或連續的兩個0,都只讀一個0。

  3、數的大小比較:

  ①位數不同的數比較大小,位數多的數大。

  ②位數相同的數比較大小,先比較這兩個數的位上的數,如果位上的數相同,就比較下一位,以此類推。

  4、求一個數的近似數:

  記憶:看最位的后面一位,如果是0—4則用四舍法,如果是5—9就用五入法。

  的三位數是位999,最小的三位數是100,的四位數是9999,最小的四位數是1000。

  的三位數比最小的四位數小1。

  5、被減數是三位數的連續退位減法的運算步驟:

  ①列豎式時相同數位一定要對齊;

  ②減法時,哪一位上的數不夠減,從前一位退1;如果前一位是0,則再從前一位退1。

  6、在做題時,我們要注意中間的0,因為是連續退位的,所以從百位退1到十位當10后,還要從十位退1當10,借給個位,那么十位只剩下9,而不是10。(兩個三位數相加的和:可能是三位數,也有可能是四位數。)

  7、公式被減數=減數+差

  和=加數+另一個加數

  減數=被減數—差

  加數=和—另一個加數

  差=被減數—減數

  符號/是什么意思數學

  /在數學中是“除”的意思。例如:4/5我們可以說4除以5或者四分之五。數學符號的發明及使用比數字要晚,但其數量卻超過了數字。現代數學常用的數學符號已超過了200個,其中,每一個符號都有一段有趣的經歷。

  實數知識點

  平方根:①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。

  立方根:①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。

  實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。

【小學數學知識點總結】相關文章:

小學數學知識點總結10-27

小學數學知識點總結12-05

小學數學備考知識點總結11-18

人教版小學數學知識點總結08-28

小學數學必備知識點總結整理03-01

北京小學數學知識點總結04-24

小學數學知識點總結(15篇)11-10

小學數學知識點總結15篇04-02

中小學數學知識點總結11-04

小學生數學知識點總結06-08

久久综合国产中文字幕,久久免费视频国产版原创视频,欧美日韩亚洲国内综合网香蕉,久久久久久久久久国产精品免费
亚洲人成电影日本在线 | 中文字幕在线播 | 亚洲欧美午夜福利 | 最新亚洲第一AV在线 | 日韩精品中文一区二区 | 亚洲免费中文字幕 |