高一數學知識點歸納總結

時間:2023-12-07 11:00:14 芊喜 知識點總結 我要投稿

高一數學知識點歸納總結

  總結是指對某一階段的工作、學習或思想中的經驗或情況進行分析研究,做出帶有規律性結論的書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,因此我們要做好歸納,寫好總結。那么你真的懂得怎么寫總結嗎?下面是小編幫大家整理的高一數學知識點歸納總結,僅供參考,希望能夠幫助到大家。

高一數學知識點歸納總結

  高一數學知識點歸納總結

  指數函數

  (1)指數函數的定義域為所有實數的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮。

  (2)指數函數的值域為大于0的實數集合。

  (3)函數圖形都是下凹的。

  (4)a大于1,則指數函數單調遞增;a小于1大于0,則為單調遞減的。

  (5)可以看到一個顯然的規律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數的曲線從分別接近于Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

  (6)函數總是在某一個方向上無限趨向于X軸,永不相交。

  (7)函數總是通過(0,1)這點。

  (8)顯然指數函數無界。

  奇偶性

  定義

  一般地,對于函數f(x)

  (1)如果對于函數定義域內的任意一個x,都有f(-x)=-f(x),那么函數f(x)就叫做奇函數。

  (2)如果對于函數定義域內的任意一個x,都有f(-x)=f(x),那么函數f(x)就叫做偶函數。

  (3)如果對于函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數f(x)既是奇函數又是偶函數,稱為既奇又偶函數。

  (4)如果對于函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數f(x)既不是奇函數又不是偶函數,稱為非奇非偶函數。

  高一數學知識點歸納總結

  【基本初等函數】

  一、指數函數

  (一)指數與指數冪的運算

  1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

  當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數。此時,的次方根用符號表示。式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand)。

  當是偶數時,正數的次方根有兩個,這兩個數互為相反數。此時,正數的正的次方根用符號表示,負的次方根用符號—表示。正的次方根與負的次方根可以合并成±(>0)。由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。

  注意:當是奇數時,當是偶數時,

  2、分數指數冪

  正數的分數指數冪的意義,規定:

  0的正分數指數冪等于0,0的負分數指數冪沒有意義

  指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪。

  3、實數指數冪的運算性質

 。ǘ┲笖岛瘮导捌湫再|

  1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R。

  注意:指數函數的底數的取值范圍,底數不能是負數、零和1。

  2、指數函數的圖象和性質

  高一數學知識點歸納總結

  I.定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c

  (a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

  則稱y為x的二次函數。

  二次函數表達式的右邊通常為二次三項式。

  II.二次函數的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

  頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

  交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

  注:在3種形式的互相轉化中,有如下關系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函數的圖像

  在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。

  IV.拋物線的性質

  1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線的交點為拋物線的頂點P。

  特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個頂點P,坐標為

  P(-b/2a,(4ac-b^2)/4a)

  當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

  3.二次項系數a決定拋物線的開口方向和大小。

  當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  高一數學知識點歸納總結

 。ㄒ唬﹫A的標準方程

  1.圓的定義:

  平面內到一定點的距離等于定長的點的軌跡叫做圓.定點叫圓的圓心,定長叫做圓的半徑.

  2.圓的標準方程:

  已知圓心為(a,b),半徑為r,則圓的方程為(x-a)2+(y-b)2=r2.

  說明:

  (1)上式稱為圓的標準方程.

  (2)如果圓心在坐標原點,這時a=0,b=0,圓的方程就是x2+y2=r2.

 。3)圓的標準方程顯示了圓心為(a,b),半徑為r這一幾何性質,即(x-a)2+(y-b)2=r2----圓心為(a,b),半徑為r.

 。4)確定圓的條件

  由圓的標準方程知有三個參數a、b、r,只要求出a、b、r,這時圓的方程就被確定。因此,確定圓的方程,需三個獨立的條件,其中圓心是圓的定位條件,半徑是圓的定型條件.

  (5)點與圓的位置關系的判定

  若點M(x1,y1)在圓外,則點到圓心的距離大于圓的半徑,即(x-a)2+(y-b)2>r2

  若點M(x1,y1)在圓內,則點到圓心的距離小于圓的半徑,即(x-a)2+(y-b)2<r2

  (二)圓的一般方程

  任何一個圓的方程都可以寫成下面的形式:

  x2+y2+Dx+Ey+F=0①

  將①配方得:

 、(x+D/2)2+(y+E/2)2=D2+E2-4F/4

  當時,方程①表示以(-D/2,-E/2)為圓心,以為半徑的圓;

  當時,方程①只有實數解,所以表示一個點(-D/2,-E/2);

  當時,方程①沒有實數解,因此它不表示任何圖形.

  故當時,方程①表示一個圓,方程①叫做圓的一般方程.

  圓的標準方程的優點在于它明確地指出了圓心和半徑,而一般方程突出了方程形式上的特點:

  (1)和的系數相同,且不等于0;

 。2)沒有xy這樣的二次項.

  以上兩點是二元二次方程表示圓的必要條件,但不是充分條件.

  要求出圓的一般方程,只要求出三個系數D、E、F就可以了.

 。ㄈ┲本和圓的位置關系

  1.直線與圓的位置關系

  研究直線與圓的位置關系有兩種方法:

 。╨)幾何法:令圓心到直線的距離為d,圓的半徑為r.

  d>r直線與圓相離;d=r直線與圓相切;0≤d

  高一數學知識點歸納總結

  一、函數的概念與表示

  1、映射

  (1)映射:設A、B是兩個集合,如果按照某種映射法則f,對于集合A中的任一個元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。

  注意點:(1)對映射定義的理解。(2)判斷一個對應是映射的方法。一對多不是映射,多對一是映射

  2、函數

  構成函數概念的三要素

  ①定義域②對應法則③值域

  兩個函數是同一個函數的條件:三要素有兩個相同

  二、函數的解析式與定義域

  1、求函數定義域的主要依據:

  (1)分式的分母不為零;

  (2)偶次方根的被開方數不小于零,零取零次方沒有意義;

  (3)對數函數的真數必須大于零;

  (4)指數函數和對數函數的底數必須大于零且不等于1;

  三、函數的值域

  1求函數值域的方法

  ①直接法:從自變量x的范圍出發,推出y=f(x)的取值范圍,適合于簡單的復合函數;

 、趽Q元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式;

 、叟袆e式法:運用方程思想,依據二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

 、芊蛛x常數:適合分子分母皆為一次式(x有范圍限制時要畫圖);

 、輪握{性法:利用函數的單調性求值域;

 、迗D象法:二次函數必畫草圖求其值域;

 、呃脤μ柡瘮

 、鄮缀我饬x法:由數形結合,轉化距離等求值域。主要是含絕對值函數

  四.函數的奇偶性

  1.定義:設y=f(x),x∈A,如果對于任意∈A,都有,則稱y=f(x)為偶函數。

  如果對于任意∈A,都有,則稱y=f(x)為奇

  函數。

  2.性質:

 、賧=f(x)是偶函數y=f(x)的圖象關于軸對稱,y=f(x)是奇函數y=f(x)的圖象關于原點對稱,

  ②若函數f(x)的定義域關于原點對稱,則f(0)=0

 、燮妗榔=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數的定義域D1,D2,D1∩D2要關于原點對稱]

  3.奇偶性的判斷

 、倏炊x域是否關于原點對稱②看f(x)與f(-x)的關系

  五、函數的單調性

  1、函數單調性的定義:

  2設是定義在M上的函數,若f(x)與g(x)的單調性相反,則在M上是減函數;若f(x)與g(x)的單調性相同,則在M上是增函數。

  高一數學知識點歸納總結

  1、函數零點的定義

  (1)對于函數)(xfy,我們把方程0)(xf的實數根叫做函數)(xfy)的零點。

  (2)方程0)(xf有實根函數(yfx)的圖像與x軸有交點函數(yfx)有零點。因此判斷一個函數是否有零點,有幾個零點,就是判斷方程0)(xf是否有實數根,有幾個實數根。函數零點的求法:解方程0)(xf,所得實數根就是(fx)的零點(3)變號零點與不變號零點

  ①若函數(fx)在零點0x左右兩側的函數值異號,則稱該零點為函數(fx)的變號零點。②若函數(fx)在零點0x左右兩側的函數值同號,則稱該零點為函數(fx)的不變號零點。

  ③若函數(fx)在區間,ab上的圖像是一條連續的曲線,則0

  2、函數零點的判定

  (1)零點存在性定理:如果函數)(xfy在區間],[ba上的圖象是連續不斷的曲線,并且有(fa)(fb),那么,函數(xfy)在區間,ab內有零點,即存在,(0bax,使得0)(0xf,這個0x也就是方程0)(xf的根。

  (2)函數)(xfy零點個數(或方程0)(xf實數根的個數)確定方法

  ①代數法:函數)(xfy的零點0)(xf的根;②(幾何法)對于不能用求根公式的方程,可以將它與函數)(xfy的圖象聯系起來,并利用函數的性質找出零點。

  (3)零點個數確定

  0)(xfy有2個零點0)(xf有兩個不等實根;0)(xfy有1個零點0)(xf有兩個相等實根;0)(xfy無零點0)(xf無實根;對于二次函數在區間,ab上的零點個數,要結合圖像進行確定.

  3、二分法

  (1)二分法的定義:對于在區間[,]ab上連續不斷且(fa)(fb)的函數(yfx),通過不斷地把函數(yfx)的零點所在的區間一分為二,使區間的兩個端點逐步逼近零點,進而得到零點的近似值的方法叫做二分法;

  (2)用二分法求方程的近似解的步驟:

 、俅_定區間[,]ab,驗證(fa)(fb)給定精確度e;

 、谇髤^間(,)ab的中點c;

 、塾嬎(fc);

  (ⅰ)若(fc),則c就是函數的零點;

  (ⅱ)若(fa)(fc),則令bc(此時零點0(,)xac);(ⅲ)若(fc)(fb),則令ac(此時零點0(,)xcb);

 、芘袛嗍欠襁_到精確度e,即ab,則得到零點近似值為a(或b);否則重復②至④步.

【高一數學知識點歸納總結】相關文章:

高一數學的知識點歸納總結07-11

高一數學知識點歸納總結06-12

高一數學知識點的歸納總結07-28

高一數學必修一知識點總結歸納02-15

高一數學知識點重點總結歸納09-23

高一數學必修一知識點總結歸納01-14

高一數學知識點總結歸納7篇05-17

高一數學知識點歸納總結13篇12-17

高一數學知識點歸納總結精選13篇12-18

久久综合国产中文字幕,久久免费视频国产版原创视频,欧美日韩亚洲国内综合网香蕉,久久久久久久久久国产精品免费
视频在线欧美十亚洲曰本 | 五月天轻轻草骚女在线观看 | 久久人人爽爽人人爽爽aⅤ 亚洲图片在线视频 | 亚洲性爱图一区二区三区 | 亚洲中文字幕夜夜精品 | 青青青青久久综合色 |