數學的知識點總結

時間:2024-10-12 09:51:46 晶敏 知識點總結 我要投稿

數學的知識點總結

  在平時的學習中,大家最熟悉的就是知識點吧?知識點也不一定都是文字,數學的知識點除了定義,同樣重要的公式也可以理解為知識點。相信很多人都在為知識點發愁,下面是小編收集整理的數學的知識點總結,歡迎閱讀與收藏。

數學的知識點總結

  1、公式:

  (1)長方形:

  周長=(長+寬)×2字母公式:C=(a+b)×2

  長=周長÷2—寬字母公式:a=C÷2—b

  寬=周長÷2—長字母公式:b=C÷2—a

  面積=長×寬字母公式:S=ab

  (2)正方形:

  周長=邊長×4字母公式:C=4a

  面積=邊長×邊長字母公式:S=a2

  (3)平行四邊形:

  面積=底×高字母公式:S=ah

  底=面積÷高字母公式:a=S÷h

  高=面積÷底字母公式:h=S÷a

  (4)三角形:

  面積=底×高÷2字母公式:S=ah÷2

  底=面積×2÷高字母公式:a=S×2÷h

  高=面積×2÷底字母公式:h=S×2÷a

  (5)梯形:

  面積=(上底+下底)×高÷2字母公式:S=(a+b)h÷2

  高=面積×2÷(上底+下底)字母公式:h=2S÷(a+b)

  上底+下底=面積×2÷高字母公式:a+b=2S÷h

  上底=面積×2÷高—下底字母公式:a=2S÷h—b

  下底=面積×2÷高—上底字母公式:b=2S÷h—a

  2、平行四邊形面積公式推導:

  平行四邊形可以轉化成一個長方形;長方形的長相當于平行四邊形的底;長方形的寬相當于平行四邊形的高;長方形的面積等于平行四邊形的面積。

  因為長方形面積=長×寬,所以平行四邊形面積=底×高。

  3、三角形面積公式推導:

  兩個完全一樣的三角形可以拼成一個平行四邊形,平行四邊形的底相當于三角形的底,平行四邊形的高相當于三角形的高;平行四邊形的面積等于三角形面積的2倍。

  因為平行四邊形面積=底×高,所以三角形面積=底×高÷2

  4、梯形面積公式推導:

  兩個完全一樣的梯形可以拼成一個平行四邊形,平行四邊形的底相當于梯形的上下底之和;平行四邊形的高相當于梯形的高;平行四邊形面積等于梯形面積的2倍。

  因為平行四邊形面積=底×高,所以梯形面積=(上底+下底)×高÷2

  5、等底等高的平行四邊形面積相等;等底等高的三角形面積相等;等底等高的平行四邊形面積是三角形面積的2倍。

  6、長方形框架拉成平行四邊形,周長不變,高和面積變小。

  7、組合圖形:轉化成已學的簡單圖形,通過加、減進行計算。

  小學數學等式的性質

  性質1:等式兩邊同時加上(或減去)同一個整式,等式仍然成立。

  若a=b,那么a+c=b+c

  性質2:等式兩邊同時乘或除以同一個不為0的整式,等式仍然成立。

  若a=b,那么有a·c=b·c或a÷c=b÷c(c≠0)

  性質3:等式具有傳遞性。

  若a1=a2,a2=a3,a3=a4那么a1=a2=a3=a4

  小學數學量的計算單位及進率歸類

  1、長度計量單位及進率:

  千米(公里)、米、分米、厘米、毫米

  1千米=1公里1千米=1000米

  1米=10分米1分米=10厘米

  1厘米=10毫米

  2、面積計量單位及進率:

  平方千米、公頃、平方米、平方分米、平方厘米

  1平方千米=100公頃

  1平方千米=1000000平方米

  1公頃=10000平方米

  1平方米=100平方分米

  1平方分米=100平方厘米

  3、體積容積計量單位及進率:

  立方米、立方分米、立方厘米、升、毫升

  1立方米=1000立方分米

  1立方分米=1000立方厘米

  1立方分米=1升1立方厘米=1毫升

  4、質量單位及進率:

  噸、千克、公斤、克

  1噸=1000千克

  1千克=1公斤

  1千克=1000克

  5、時間單位及進率:

  世紀、年、月、日、小時、分、秒

  1世紀=100年1年=12月

  1天=24小時1小時=60分

  1分=60秒

  (31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11月份,平年2月28天,閏年2月29天)

  一、小數的乘除法

  (1)小數乘法計算法則:

  ①先按整數乘法算出積,再給積點上小數點。

  ②看因數中一共有幾位小數,就從積的右邊起(或個位)數出幾位,點上小數點。

  ③當乘得的積的小數位數不夠時,要在前面用0補足,再點小數點。

  (2)小數除法的計算方法:

  ①按整數除法的方法去除。

  ②商的小數點要和被除數的小數點對齊;如果整數部分不夠除,商0,點上小數點。

  ③如果有余數,要添0再除。

  想一想:除數是小數怎么計算?(要把除數是小數轉化為除數是整數)

  (3)一個數(0除外)乘大于1的數時,積比原來的數大。

  一個數(0除外)乘小于1的數時,積比原來的數小。

  一個因數擴大多少倍,另一個因數縮小相同的倍數,積不變。

  一個因數不變,另一個因數擴大(縮小)多少倍,積也擴大(縮小)多少倍。

  被除數和除數同時擴大(縮小)相同的倍數,商不變。

  被除數擴大(縮小)多少倍,除數不變,商擴大(縮小)多少倍。

  被除數不變,除數擴大(縮小)多少倍,商縮小(擴大)多少倍。

  (4)小數的四則運算順序跟整數是一樣的。

  (5)整數乘法的交換律、結合律和分配律,對于小數也同樣適用。

  二、簡易方程

  (1)用字母表示數

  想一想:怎樣用字母表示下面的公式?

  ①加法的交換律②加法結合律③乘法交換律④乘法分配律

  ⑤正方形的周長和面積⑥長方形的周長和面積⑦平行四邊形的面積⑧三角形的面積⑨梯形的面積

  (2)方程的基本性質:

  ①方程兩邊同時加上或減去同一個數,左右兩邊仍然相等。

  ②方程兩邊同時乘同一個數,左右兩邊仍然相等。

  ③方程兩邊同時除以同一個不等于0的數,方程左右兩邊仍然相等。

  三、多邊形的面積

  ①平行四邊形的面積

  ②三角形的面積

  ③梯形的面積

  ④組合圖形的面積

  四、統計與可能性

  想一想:中位數的求法

  第一單元小數除法

  1、除數是整數的小數除法計算法則:除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有余數,就在余數后面添0再繼續除。

  2、除數是小數的小數除法計算法則:除數是小數的除法,先移動除數的小數點,使它變成整數;除數的小數點向右移動幾位,被除數的小數點也向右移動幾位(位數不夠的,在被除數末尾用0補足),然后按照除數是整數的小數除法進行計算。

  3、連除的算式可以寫成被除數除以幾個數的積,但除以幾個數的積時,必須給這個相乘的式子加上小括號。

  4、在小數除法中的發現:

  ①當除數不為0時,除數大于1時,商小于被除數。如:3.5÷5=0.7

  ②當除數不為0時,除數小于1時,商大于被除數。如:3.5÷0.5=7

  當除數不為0時,除數等于1時,商等于被除數。如:3.5÷1=3.5

  5、小數除法的驗算方法:

  ①商×除數=被除數(通用) ②被除數÷商=除數

  6、商的近似數:根據要求要保留的小數位數,決定商要除出幾位小數,再根據“四舍五入”法保留一定的小數位數,求出商的近似數。例如:要求保留一位小數的,商除到第二位小數可停下來;要求保留兩位小數的,商除到第三位小數停下來……如此類推。

  7、循環小數:

  A、小數部分的位數是有限的小數,叫做有限小數。如,0.37、1.4135等。

  B、小數部分的位數是無限的小數,叫做無限小數。如5.3… 7.145145…等。

  C、一個數的小數部分,從某位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數。(如5.3… 3.12323… 5.7171…)

  D、一個循環小數的小數部分,依次不斷重復的數字,叫做小數的循環節。(如5.333…的循環節是3,4.6767…的循環節是67,6.9258258…的循環節是258)

  E、用簡便方法寫循環小數的方法:

  ①只寫一個循環節,并在這個循環節的首位和末位上面記一個小圓點

  ②例如:只有一個數字循環節的,就在這個數字上面記一個小圓點,5.333…寫作5.3;有兩位小數循環的,就在這兩位數字上面,記上小圓點,7.4343…寫作7.4 3;有三位或以上小數循環的,在首位和末位記上小數點,10.732732…寫作10.732

  8、除法中的變化規律:①商不變性質:被除數和除數同時擴大或縮小相同的倍數( 0除外),商不變。②除數不變,被除數擴大,商隨著擴大。 ③被除數不變,除數縮小,商擴大。

  9、小數的四則混合運算順序與整數四則混合運算的運算順序相同。

  第二單元軸對稱和平移

  軸對稱:

  1.軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形,那條直線就叫做對稱軸。兩圖形重合時互相重合的點叫做對應點,也叫對稱點。

  2.軸對稱圖形的性質:對應點到對稱軸的距離相等,對應點連線垂直于對稱軸。

  3.軸對稱圖形具有對稱性。

  4軸對稱圖形的法:

  (1)找出所給圖形的關鍵點,如圖形的頂點、相交點、端點等;

  (2)數出或量出圖形關鍵點到對稱軸的距離;

  (3)在對稱軸的另一側找出關鍵點的對稱點;

  (4)按照所給圖形的順序連接各點,就畫出所給圖形的軸對稱圖形。

  平移:

  1.平移的定義:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。

  2.平移的基本性質:

  (1)平移不改變圖形的形狀和大小,只改變圖形的位置。

  (2)經過平移,對應線段,對應角分別相等;對應點所連的線段平行且相等。

  3.平移圖形的畫法:

  (1)確定平移的方向與距離。

  (2)將關鍵點按所需方向平移所需距離。

  (3)按原來圖形的連接方式依次連接各對應點。

  4、平移幾格并不是指原圖形和平移后的新圖形之間的空格數,而是指原圖形的關鍵點平移的格數。

  設計圖案的基本方法:平移、對稱

  1.運用平移設計圖案的方法:

  (1)選好基本圖案;(2)根據所選的基本圖案確定平移的格數和方向;

  (3)平移,描出對應點;(4)按順序連接對應點

  2.運用對稱設計圖案的方法:

  (1)先選好基本圖案;

  (2)依據基本圖案的特點定好對稱軸;

  (3)選好關鍵點,并描出關鍵點的對應點;

  (4)按順序連接對應點,畫出基本圖形的對稱圖形

  第三單元倍數和因數

  像0,1,2,3,4,5,6,…這樣的數是自然數。

  像-3,-2,-1,0,1,2,3,…這樣的數是整數。

  我們只在自然數(零除外)范圍內研究倍數和因數。

  倍數與因數是相互依存的關系,要說清誰是誰的倍數,誰是誰的因數。

  補充知識點:一個數的倍數的個數是無限的,因數個數是有限的。

  一個數最小的因數是1,最大的因數是它本身;一個數最小的倍數是它本身,沒有最大的倍數。

  (一)2,5的倍數的特征

  2的倍數的特征:個位上是0,2,4,6,8的數是2的倍數。

  5的倍數的特征:個位上是0或5的數是5的倍數。

  偶數和奇數的定義:是2的倍數的數叫偶數,不是2的倍數的數叫奇數。

  補充知識點:

  既是2的倍數,又是5的倍數的特征:個位上是0的數既是2的倍數,又是5的倍數。(既是2的倍數,又是5的倍數都是整十數,最小的兩位數是10,最小的三位數是100)

  (二)3的倍數的特征

  一個數各個數位上的數字的和是3的倍數,這個數就是3的倍數。

  同時是2和3的倍數的特征:個位上的數是0,2,4,6,8,并且各個數位上的數字的和是3的倍數的數,既是2的倍數,又是3的倍數。(同時是2和3的倍數,一定是6的倍數,最小的是6。)

  同時是3和5的倍數的特征:個位上的數是0或5,并且各個數位上的數字的和是3的倍數的數,既是3的倍數,又是5的倍數。(同時是3和5的倍數,一定是15的倍數,最小的是15。)

  同時是2,3和5的倍數的特征:個位上的數是0,并且各個數位上的數字的和是3的倍數的數,既是2和5的倍數,又是3的倍數。(同時是2,3和5的倍數,一定是30的倍數,最小的兩位數是30,最小的三位數是120)

  9的倍數的特征:一個數各個數位上的數字的和是9的倍數,這個數就是9的倍數,它也一定是3的倍數。

  ㈣找因數

  在1~100的自然數中,找出某個自然數的所有因數。方法:1、運用乘法算式,思考:哪兩個數相乘等于這個自然數,那么這兩個乘數就是這個數的因數。2、運用除法算式,思考這個數除以幾能整除,那么除數和商就是這個數的因數。

  補充知識點:

  一個數的因數的個數是有限的。其中最小的因數是1,最大的因數是它本身。找一個數的因數,通常用列舉的方法,可一對一對的寫出來,也可按從小到大的順序來寫。

  ㈤找質數

  一個數只有1和它本身兩個因數,這個數叫作質數。

  一個數除了1和它本身以外還有別的因數,這個數叫作合數。

  1既不是質數也不是合數。

  判斷一個數是質數還是合數的方法:

  一般來說,首先可以用“2,5,3的倍數的特征”判斷這個數是否有因數2,5,3;如果還無法判斷,則可以用7,11等比較小的質數去試除,看有沒有因數7,11等。只要找到一個1和它本身以外的因數,就能肯定這個數是合數。如果除了1和它本身找不到其他因數,這個數就是質數。

  ㈥數的奇偶性

  運用“列表”“畫示意圖”等方法發現規律:

  小船最初在南岸,從南岸駛向北岸,再從北岸駛回南岸,不斷往返。通過“列表”“畫示意圖”的方法會發現“奇數次在北岸,偶數次在南岸”的規律。

  通過計算發現奇數、偶數相加奇偶性變化的規律:

  偶數+偶數=偶數奇數+奇數=偶數偶數+奇數=奇數

  偶數-偶數=偶數奇數-奇數=偶數偶數-奇數=奇數

  奇數-偶數=奇數

  偶數×偶數=偶數偶數×奇數=偶數奇數×奇數=奇數

  第四單元多邊形面積

  ㈠比較圖形的面積

  借助方格紙,能直接判斷圖形面積的大小。

  平面圖形面積大小的比較有多種方法:

  根據圖形面積的大小,可以直接進行比較;可以借助參照物進行比較;可以運用重疊的方法進行比較;借助方格,利用數方格的的方法進行比較;直接計算面積后再進行比較等。

  圖形面積相同,其形狀可以是不同的。

  補充知識點:

  確定一個圖形面積的大小,不僅是根據圖形的形狀,更重要的是根據圖形所占格子的多少來確定。

  ㈡地毯上的圖形面積

  知識點:

  根據地毯上所給圖案探求不規則圖案面積的計算方法。

  直接通過數方格的方法,得出答案的面積。

  將圖案進行“化整為零”式的計算,即根據圖案的特點,將整體的圖案分割為若干個相同面積的小圖案,通過求小圖案的面積,得出整個圖案的面積。

  采用“大面積減小面積”的方法,即通過計算相關圖形的面積,得到所求的面積。

  補充知識點:

  在解決問題時,策略和方法是多種多樣的。

  ㈢動手做

  認識平行四邊形、三角形與梯形的底和高。

  從平行四邊形一邊的某一點到對邊畫垂直線段,這條垂直線段就是平行四邊形的高,這條對邊是平行四邊形的底。

  三角形的一個頂點到對邊的垂直線段是三角形的高,這條對邊是三角形的底。

  從梯形的兩條平行線中的一條上的某一點到對邊畫垂直線段,這條垂直線段就是梯形的高,這條對邊就是梯形的底。

  高和底的關系是對應的。

  用三角板畫出平行四邊形的高的方法:

  把三角板的一條直角邊與平行四邊形的一條邊重合,讓三角板的另一條直角邊過對邊的某一點。從這一點沿著三角板的另一條直角邊向它的對邊畫垂線,這條垂線(從點到垂足)就是平行四邊形一條邊上的高。

  注意:從一條邊上的任意一點可以向它的對邊畫高,也可以從另一條邊上的任意一點向它的對邊畫高。

  用三角板畫出三角形的高的方法:

  把三角板的一條直角邊對準三角形的一個頂點,另一條直角邊與這個頂點的對邊重合。從這個頂點沿著三角板的另一條直角邊向它的對邊畫垂線,這條垂線(從頂點到垂足)就是三角形形一條邊上的高。

  用三角板畫梯形的高的方法:

  用同樣的方法,畫出梯形兩條平行線之間的垂直線段,就是梯形的高。

  (一)平行四邊形的面積

  平行四邊形的面積=拼成的長方形的面積

  長方形的長就是平行四邊形的底;長方形的寬就是平行四邊形的高。

  因此:平行四邊形面積=底×高

  如果用S表示平行四邊形的面積,用a和h分別表示平行四邊形的底和高,那么,平行四邊形的面積公式可以寫成:S=a h

  補充知識點:

  當平行四邊形的底和高相同時,其面積也是相同的。

  (二)三角形的面積

  三角形面積=兩個相同三角形拼成的平行四邊形的面積÷2

  三角形的底和高,也就是平行四邊形的底和高。

  因此:三角形面積=平行四邊形的面積÷2=底×高÷2

  如果用S表示三角形的面積,用a和h分別表示三角形的底和高,那么,三角形的面積公式可以寫成:S=a h÷2

  補充知識點:

  決定三角形面積的大小的因素不是圖形的形狀,而是三角形的底與高的長度,只要底和高相同,不同形狀的三角形的面積也是相同的。

  (三)梯形的面積

  梯形面積=兩個相同梯形拼成的平行四邊形的面積÷2

  梯形的上底與下底的和就是平行四邊形的底,梯形的高就是平行四邊形的高。

  因此:梯形面積=平行四邊形面積÷2=底×高÷2=(上底+下底)×高÷2

  如果用S表示梯形的面積,用a和b分別表示梯形的上底和下底,用h表示梯形的高,那么,梯形的面積公式可以寫成:S= (a+b)h÷2

  補充知識點:

  決定梯形面積的大小的因素不是圖形的形狀,而是梯形的上、下底之和與高的長度,只要上下底的和與高相同,不同形狀的梯形的面積也是相同的。

  等底等高的三角形的面積相等。

  等底等高的平行四邊形的面積相等。

  第五單元分數的意義

  ㈠分數的再認識

  整體“1”的含義:一個物體或一些物體都可以看作一個整體,這個整體可以用自然數“1”來表示,通常叫做整體“1”。

  分數的意義:把整體“1”平均分成若干份,其中的一份或幾份,可以用分數表示。分母是幾,整體就被分成了幾份,分子是幾,就表示其中的幾份。

  分數對應的“整體”不同,分數所表示的部分的大小或具體數量也不一樣,即分數具有相對性。同一個分數對應的整體大,表示的具體數量就大;對應的整體小,表示的具體數量就小。同一個分數表示的具體數量大,對應的整體就大;表示的具體數量小,對應的整體就小。

  ㈡(真分數與假分數)

  理解真分數、假分數、帶分數的意義。

  真分數特點:分子都比分母小;分數值小于1。

  假分數特點:分子比分母大,或者分子與分母相等;分數值大于或等于1。

  帶分數特點:由整數和真分數兩部分組成的;分數值大于1。

  帶分數的讀法:讀作:二又四分之一。

  ★補充知識點:

  分子是分母倍數的假分數可以化成整數;分子不是分母倍數的假分數可以化成帶分數。

  ㈢分數與除法

  理解分數與除法的關系:被除數÷除數=(除數不為0)。

  分數的分母不能是0。因為在除法中,0不能做除數,因此根據分數與除法的關系,分數中的分母相當于除法中的除數,所以分母也不能是0。可以用分數來表示兩數相除的商。分數的分子相當于除法中的被除數,分母相當于除數,分數線相當于除號,分數的值相當于商。

  根據分數與除法的關系把假分數化成帶分數的方法:用分子除以分母,把所得的商寫在帶分數的整數位置上,余數寫在分數部分的分子上,仍用原來的分母作分母。

  把帶分數化成假分數的方法:將整數與分母相乘的積加上原來的分子作分子,分母不變。

  ㈣分數基本性質

  分數的分子和分母都乘上或除以相同的數(0除外),分數的大小不變。

  分子相當于被除數,分母相當于除數,被除數和除數同時乘或除以相同的數(0除外),商不變。因此分數的分子和分母都乘或除以相同的數(0除外),分數的大小也是不變的。

  求一個數是另一個數的幾分之幾:一個數÷另一個數=,即比較量÷標準量=,得到的商表示兩個數的關系,沒有單位名稱。

  ㈤找最大公因數

  幾個數公有的因數是這幾個數的公因數,其中最大的一個是它們的最大公因數。

  找兩個數的公因數和最大公因數的方法:

  列舉法:運用找因數的方法先分別找到兩個數各自的因數,再找出兩個數的因數中相同的因數,這些數就是兩個數的公因數;再看看公因數中最大的是幾,這個數就是兩個數的最大公因數。

  補充知識點:

  其他找最大公因數的方法:

  找兩個數的公因數和最大公因數,可以先找出兩個數中較小的數的因數,再看看這些因數中有哪些也是較大的數的因數,那么這些數就是這兩個數的公因數。其中最大的就是這兩個數的最大公因數。

  例如:找15和50的公因數和最大公因數:

  可以先找出15的因數:1,3,5,15。再判斷4個數中,哪幾個也是50的因數,只有1和5,1和5就是15和50的公因數。5就是它們的最大公因數。

  3、如果兩個數是不同的質數,那么這兩個數的公因數只有1。

  4、如果兩個數是連續的自然數(0除外),那么這兩個數的公因數只有1。

  5、如果兩個數具有倍數關系,那么較小的數就是這兩個數的最大公因數。

  ㈥約分

  把一個分數的分子、分母同時除以公因數,分數的值不變,這個過程叫做約分。

  理解最簡分數的含義:

  像這樣分子、分母公因數只有1了,不能再約分了,這樣的分數是最簡分數。分子與分母是相鄰的自然數的分數一定是最簡分數;分子分母是兩個不同質數的分數一定是最簡分數;分子是“1”的分數一定是最簡分數。

  掌握約分的方法:

  約分的方法一般有兩種,一種是用兩個數的公因數一個一個去除,另一種是直接用兩個數的最大公因數去除。

  補充知識點:

  比較分數大小時,分母相同的、分子相同的可以直接比較,有些時候分子分母都不相同可以采用約分后進行比較的方法。例如:○

  ㈦找最小公倍數

  兩個數公有的倍數叫做這兩個數的公倍數,其中最小的一個,叫做最小公倍數。

  找兩個數的公倍數和最小公倍數的方法:

  1、先找出兩個數各自的倍數(限制一定的范圍內),再找出公有的倍數,找出兩個數公有的倍數,看看這些公倍數中最小的是幾,這個數就是兩個數的最小公倍數。

  兩個數公倍數的個數是無限的,因此只有最小公倍數沒有最大的公倍數。

  補充知識點:

  其他找公倍數和最小公倍數的方法:

  2、找兩個數的公倍數和最小公倍數,可以先找出兩個數中較大的數的倍數(限制一定的范圍內),再看看這些倍數中有哪些也是較小的數的倍數,那么這些數就是這兩個數的公倍數。其中最小的就是這兩個數的最小公倍數。

  例如:找6和9的公倍數和最小公倍數。(50以內)可以先找出9的倍數(50以內)有:9,18,27,36,45,再從這些數中找出6的倍數18,36,18和36就是6和9的公倍數,18是最小公倍數。

  3、如果兩個數是不同的質數,那么這兩個數的最小公倍數是兩個數的乘積。

  4、如果兩個數是連續的自然數(0除外),那么這兩個數的最小公倍數是兩個數的乘積。

  5、如果兩個數具有倍數關系,那么較大的數就是這兩個數的最小公倍數。

  6、短除法求最小公倍數

  ㈧分數的大小

  把分母不相同的分數化成和原來分數相等、并且分母相同的分數,這個過程叫作通分。

  ★通分的兩個要點:和原來分數相等;分母相同。

  ■分數大小比較:

  同分母分數相比較,分子越大分數越大。同分子分數相比較,分母越小分數越大。

  分子分母都不相同的分數相比較的方法:

  用通分的方法把分母不相同的分數化成和原來分數相等、并且分母相同的分數,再比較大小。(把兩個分數化成分子相同的分數,再比較大小)

  補充知識點:通分一般以最小公倍數作分母。

  第六單元組合圖形的面積

  組合圖形面積

  知識點:了解組合圖形:有幾個簡單的圖形拼出來的圖形,我們把它們叫做組合圖形。

  計算組合圖形的面積的方法是多種多樣的。一般運用的方法是“分割法”和“添補法”。

  分割法,即將這個圖形分割成幾個基本的圖形。分割圖形越簡潔,其解題的方法也將越簡單,同時又要考慮分割的圖形與所給條件的關系。

  添補法,即通過補上一個簡單的圖形,使整個圖形變成一個大的規則圖形。

  探索活動:成長的腳印

  知識點:能正確估計不規則圖形面積的大小。

  能用數格子的方法,計算不規則圖形的面積。

  估計、計算不規則圖形面積的內容主要是以方格圖作為背景進行估計與計算的,所以借助方格圖能幫助建立估計與計算不規則圖形面積的方法。

  數方格的方法:滿格記為1,少于半格記為0,大于半格記為1。

  嘗試與猜測

  雞兔同籠知識點:運用列表的方法(逐一列表法、跳躍列表法、折中列表法)解決類似于“雞兔同籠”的問題,也可用“方程”來解決。

  點陣中的規律知識點:能在觀察活動中,發現點陣中隱含的規律,體會到圖形與數的聯系。在“點陣中的規律”的活動中,通過觀察前后圖形中點的變化規律,推理出后續圖形中點的數量。

  第七單元可能性

  1、判斷游戲是否公平,要看事件發生的可能性是否相等。

  2、摸球游戲(用分數表示可能性的大小)

  (1)通過游戲所列的條件,推測某種情況出現的概率;

  (2)能判斷事件發生可能性的大小,寫出所有可能發生的情況,推測可能發生的結果。

  知識點:用分數表示可能性的大小。

  客觀事件中,“不可能”出現的現象用數據表示為“可能性是0”,客觀事件中,“一定能”出現的現象用數據表示為“可能性是“1”,當可能性是相等的時候,用數據表述是“ ”。

  逐步體會到數據表示的簡潔性與客觀性。

  時分秒

  1、鐘面上有3根針,它們是(時針)、(分針)、(秒針),其中走得最快的是(秒針),走得最慢的是(時針)。

  2、鐘面上有(12)個數字,(12)個大格,(60)個小格;每兩個數間是(1)個大格,也就是(5)個小格。

  3、時針走1大格是(1)小時;分針走1大格是(5)分鐘,走1小格是( 1)分鐘;秒針走1大格是(5)秒鐘,走1小格是(1)秒鐘。

  4、時針走1大格,分針正好走(1)圈,分針走1圈是(60)分,也就是(1)小時。時針走1圈,分針要走(12)圈。

  5、分針走1小格,秒針正好走(1)圈,秒針走1圈是(60)秒,也就是(1)分鐘。

  6、時針從一個數走到下一個數是(1小時)。分針從一個數走到下一個數是(5分鐘)。秒針從一個數走到下一個數是(5秒鐘)。

  7、鐘面上時針和分針正好成直角的時間有:(3點整)、(9點整)。

  8、公式。(每兩個相鄰的時間單位之間的進率是60)

  1時=60分1分=60秒

  半時=30分60分=1時

  60秒=1分30分=半時

  萬以內的加法和減法

  1、認識整千數(記憶:10個一千是一萬)

  2、讀數和寫數(讀數時寫漢字寫數時寫阿拉伯數字)

  ①一個數的末尾不管有一個0或幾個0,這個0都不讀。

  ②一個數的中間有一個0或連續的兩個0,都只讀一個0。

  3、數的大小比較:

  ①位數不同的數比較大小,位數多的數大。

  ②位數相同的數比較大小,先比較這兩個數的最高位上的數,如果最高位上的數相同,就比較下一位,以此類推。

  4、求一個數的近似數:

  記憶:看最位的后面一位,如果是0-4則用四舍法,如果是5-9就用五入法。

  最大的三位數是位999,最小的三位數是100,最大的四位數是9999,最小的四位數是1000。最大的三位數比最小的四位數小1。

  5、被減數是三位數的連續退位減法的運算步驟:

  ①列豎式時相同數位一定要對齊;

  ②減法時,哪一位上的數不夠減,從前一位退1;如果前一位是0,則再從前一位退1。

  6、在做題時,我們要注意中間的0,因為是連續退位的,所以從百位退1到十位當10后,還要從十位退1當10,借給個位,那么十位只剩下9,而不是10。(兩個三位數相加的和:可能是三位數,也有可能是四位數。)

  7、公式

  和=加數+另一個加數

  加數=和-另一個加數

  減數=被減數-差

  被減數=減數+差

  差=被減數-減數

  測量

  1、在生活中,量比較短的物品,可以用(毫米、厘米、分米)做單位;量比較長的物體,常用(米)做單位;測量比較長的路程一般用(千米)做單位,千米也叫(公里)。

  2、1厘米的長度里有(10)小格,每小格的長度(相等),都是(1)毫米。

  3、1枚1分的硬幣、尺子、磁卡、小紐扣、鑰匙的厚度大約是1毫米。

  4、在計算長度時,只有相同的長度單位才能相加減。

  小技巧:換算長度單位時,把大單位換成小單位就在數字的末尾添加0(關系式中有幾個0,就添幾個0);把小單位換成大單位就在數字的末尾去掉0(關系式中有幾個0,就去掉幾個0)。

  5、長度單位的關系式有:(每兩個相鄰的長度單位之間的進率是10 )

  ①進率是10:

  1米=10分米, 1分米=10厘米,1厘米=10毫米, 10分米=1米,10厘米=1分米, 10毫米=1厘米,②進率是100:

  1米=100厘米, 1分米=100毫米,100厘米=1米, 100毫米=1分米

  ③進率是1000:

  1千米=1000米, 1公里==1000米,1000米=1千米, 1000米=1公里

  6、當我們表示物體有多重時,通常要用到(質量單位)。在生活中,稱比較輕的物品的質量,可以用(克)做單位;稱一般物品的質量,常用(千克)做單位;計量較重的或大宗物品的質量,通常用(噸)做單位。

  小技巧:在“噸”與“千克”的換算中,把噸換算成千克,是在數字的末尾加上3個0;

  把千克換算成噸,是在數字的末尾去掉3個0。

  7、相鄰兩個質量單位進率是1000。

  1噸=1000千克1千克=1000克

  1000千克= 1噸1000克=1千克

  倍的認識

  1、求一個數是另一個數的幾倍用除法:一個數÷另一個數=倍數

  2、求一個數的幾倍是多少用乘法:這個數×倍數=這個數的幾倍

  多位數乘一位數

  1、估算。(先求出多位數的近似數,再進行計算。如497×7≈3500)

  2、① 0和任何數相乘都得0;② 1和任何不是0的數相乘還得原來的數。

  3、因數末尾有幾個0,就在積的末尾添上幾個0。

  4、三位數乘一位數:積有可能是三位數,也有可能是四位數。

  公式:速度×時間=路程

  每節車廂的人數×車廂的數量=全車的人數

  5、(關于“大約)應用題:

  ①條件中出現“大約”,而問題中沒有“大約”,求準確數。→(=)

  ②條件中沒有,而問題中出現“大約”。求近似數,用估算。→(≈)

  ③條件和問題中都有“大約”,求近似數,用估算。→(≈)

  四邊形

  1、有4條直的邊和4個角封閉圖形我們叫它四邊形。

  2、四邊形的特點:有四條直的邊,有四個角。

  3、長方形的特點:長方形有兩條長,兩條寬,四個直角,對邊相等。

  4、正方形的特點:有4個直角,4條邊相等。

  5、長方形和正方形是特殊的平行四邊形。

  6、平行四邊形的特點:

  ①對邊相等、對角相等。

  ②平行四邊形容易變形。(三角形不容易變形)

  7、封閉圖形一周的長度,就是它的周長。

  8、公式。

  正方形的周長=邊長×4

  正方形的邊長=周長÷4,長方形的周長=(長+寬)×2

  長方形的長=周長÷2-寬,長方形的寬=周長÷2-長

  分數的初步認識

  1、把一個物體或一個圖形平均分成幾份,取其中的幾份,就是這個物體或圖形的幾分之幾。

  2、把一個整體平均分得的份數越多,它的每一份所表示的數就越小。

  3、①分子相同,分母小的分數反而大,分母大的分數反而小。

  ②分母相同,分子大的分數就大,分子小的分數就小。

  4、①相同分母的分數相加、減:分母不變,只和分子相加、減。

  ② 1與分數相減:1可以看作是與減數分母相同的,同分子分母的分數。

  圓的方程

  1、圓的定義:平面內到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

  2、圓的方程

  (1)標準方程,圓心,半徑為r;

  (2)一般方程

  當時,方程表示圓,此時圓心為,半徑為

  當時,表示一個點;當時,方程不表示任何圖形。

  (3)求圓方程的方法:

  一般都采用待定系數法:先設后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。

  高中數學必修二知識點總結:直線與圓的位置關系:

  直線與圓的位置關系有相離,相切,相交三種情況:

  (1)設直線,圓,圓心到l的距離為,則有;

  (2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

  (3)過圓上一點的切線方程:圓(x—a)2+(y—b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0—a)(x—a)+(y0—b)(y—b)=r2

  4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

  設圓,

  兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

  當時兩圓外離,此時有公切線四條;

  當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;

  當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

  當時,兩圓內切,連心線經過切點,只有一條公切線;

  當時,兩圓內含;當時,為同心圓。

  注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

  4、空間點、直線、平面的位置關系

  公理1:如果一條直線的兩點在一個平面內,那么這條直線是所有的點都在這個平面內。

  應用:判斷直線是否在平面內

  用符號語言表示公理1:

  公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

  符號:平面α和β相交,交線是a,記作α∩β=a。

  符號語言:

  公理2的作用:

  ①它是判定兩個平面相交的方法。

  ②它說明兩個平面的交線與兩個平面公共點之間的關系:交線必過公共點。

  ③它可以判斷點在直線上,即證若干個點共線的重要依據。

  公理3:經過不在同一條直線上的三點,有且只有一個平面。

  推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

  公理3及其推論作用:①它是空間內確定平面的依據②它是證明平面重合的依據

  公理4:平行于同一條直線的兩條直線互相平行

  空間直線與直線之間的位置關系

  ①異面直線定義:不同在任何一個平面內的兩條直線

  ②異面直線性質:既不平行,又不相交。

  ③異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線

  ④異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。

  求異面直線所成角步驟:

  A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。B、證明作出的角即為所求角C、利用三角形來求角

  (7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補。

  (8)空間直線與平面之間的位置關系

  直線在平面內——有無數個公共點。

  三種位置關系的符號表示:aαa∩α=Aa‖α

  (9)平面與平面之間的位置關系:平行——沒有公共點;α‖β

  相交——有一條公共直線。α∩β=b

  5、空間中的平行問題

  (1)直線與平面平行的判定及其性質

  線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行。

  線線平行線面平行

  線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,

  那么這條直線和交線平行。線面平行線線平行

  (2)平面與平面平行的判定及其性質

  兩個平面平行的判定定理

  (1)如果一個平面內的兩條相交直線都平行于另一個平面,那么這兩個平面平行

  (線面平行→面面平行),

  (2)如果在兩個平面內,各有兩組相交直線對應平行,那么這兩個平面平行。

  (線線平行→面面平行),

  (3)垂直于同一條直線的兩個平面平行,

  兩個平面平行的性質定理

  (1)如果兩個平面平行,那么某一個平面內的直線與另一個平面平行。(面面平行→線面平行)

  (2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)

  7、空間中的垂直問題

  (1)線線、面面、線面垂直的定義

  ①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。

  ②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。

  ③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。

  (2)垂直關系的判定和性質定理

  ①線面垂直判定定理和性質定理

  判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直這個平面。

  性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

  ②面面垂直的判定定理和性質定理

  判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直。

  性質定理:如果兩個平面互相垂直,那么在一個平面內垂直于他們的交線的直線垂直于另一個平面。

  9、空間角問題

  (1)直線與直線所成的角

  ①兩平行直線所成的角:規定為。

  ②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

  ③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

  (2)直線和平面所成的角

  ①平面的平行線與平面所成的角:規定為。②平面的垂線與平面所成的角:規定為。

  ③平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角。

  求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。

  在“作角”時依定義關鍵作射影,由射影定義知關鍵在于斜線上一點到面的垂線,

  在解題時,注意挖掘題設中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線。

  (3)二面角和二面角的平面角

  ①二面角的定義:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。

  ②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。

  ③直二面角:平面角是直角的二面角叫直二面角。

  兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

  ④求二面角的方法

  定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直于棱的射線得到平面角

  垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

  數學的學習方法

  1、養成良好的學習數學習慣。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。

  2、及時了解、掌握常用的數學思想和方法,學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。

  3、逐步形成“以我為主”的學習模式數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇于探索的創新精神。

  4、記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。

  高中數學知識點有哪些

  1、混淆命題的否定與否命題

  命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結論。

  2、忽視集合元素的三性致誤

  集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數的集合,實際上就隱含著對字母參數的一些要求。

  3、判斷函數奇偶性忽略定義域致誤

  判斷函數的奇偶性,首先要考慮函數的定義域,一個函數具備奇偶性的必要條件是這個函數的定義域關于原點對稱,如果不具備這個條件,函數一定是非奇非偶函數。

  4、函數零點定理使用不當致誤

  如果函數y=f(x)在區間[a,b]上的圖像是一條連續的曲線,并且有f(a)f(b)<0,那么,函數y=f(x)在區間(a,b)內有零點,但f(a)f(b)>0時,不能否定函數y=f(x)在(a,b)內有零點。函數的零點有“變號零點”和“不變號零點”,對于“不變號零點”函數的零點定理是“無能為力”的,在解決函數的零點問題時要注意這個問題。

  5、函數的單調區間理解不準致誤

  在研究函數問題時要時時刻刻想到“函數的圖像”,學會從函數圖像上去分析問題、尋找解決問題的方法。對于函數的幾個不同的單調遞增(減)區間,切忌使用并集,只要指明這幾個區間是該函數的單調遞增(減)區間即可。

  6、三角函數的單調性判斷致誤

  對于函數y=Asin(ωx+φ)的單調性,當ω>0時,由于內層函數u=ωx+φ是單調遞增的,所以該函數的單調性和y=sin x的單調性相同,故可完全按照函數y=sin x的單調區間解決;但當ω<0時,內層函數u=ωx+φ是單調遞減的,此時該函數的單調性和函數y=sinx的單調性相反,就不能再按照函數y=sinx的單調性解決,一般是根據三角函數的奇偶性將內層函數的系數變為正數后再加以解決。對于帶有絕對值的三角函數應該根據圖像,從直觀上進行判斷。

  7、向量夾角范圍不清致誤

  解題時要全面考慮問題。數學試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關鍵,如當a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況。

  8、忽視零向量致誤

  零向量是向量中最特殊的向量,規定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實數中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應給予足夠的重視。

  9、對數列的定義、性質理解錯誤

  等差數列的前n項和在公差不為零時是關于n的常數項為零的二次函數;一般地,有結論“若數列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數列{an}為等差數列的充要條件是c=0”;在等差數列中,Sm,S2m—Sm,S3m—S2m(m∈Nx)是等差數列。

  10、an與Sn關系不清致誤

  在數列問題中,數列的通項an與其前n項和Sn之間存在下列關系:an=S1,n=1,Sn—Sn—1,n≥2。這個關系對任意數列都是成立的,但要注意的是這個關系式是分段的,在n=1和n≥2時這個關系式具有完全不同的表現形式,這也是解題中經常出錯的一個地方,在使用這個關系式時要牢牢記住其“分段”的特點。

  11、錯位相減求和項處理不當致誤

  錯位相減求和法的適用條件:數列是由一個等差數列和一個等比數列對應項的乘積所組成的,求其前n項和。基本方法是設這個和式為Sn,在這個和式兩端同時乘以等比數列的公比得到另一個和式,這兩個和式錯一位相減,就把問題轉化為以求一個等比數列的前n項和或前n—1項和為主的求和問題。這里最容易出現問題的就是錯位相減后對剩余項的處理。

  12、不等式性質應用不當致誤

  在使用不等式的基本性質進行推理論證時一定要準確,特別是不等式兩端同時乘以或同時除以一個數式、兩個不等式相乘、一個不等式兩端同時n次方時,一定要注意使其能夠這樣做的條件,如果忽視了不等式性質成立的前提條件就會出現錯誤。

  13、數列中的最值錯誤

  數列問題中其通項公式、前n項和公式都是關于正整數n的函數,要善于從函數的觀點認識和理解數列問題。數列的通項an與前n項和Sn的關系是高考的命題重點,解題時要注意把n=1和n≥2分開討論,再看能不能統一。在關于正整數n的二次函數中其取最值的點要根據正整數距離二次函數的對稱軸的遠近而定。

  14、不等式恒成立問題致誤

  解決不等式恒成立問題的常規求法是:借助相應函數的單調性求解,其中的主要方法有數形結合法、變量分離法、主元法。通過最值產生結論。應注意恒成立與存在性問題的區別,如對任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)—g(x)≤0的恒成立問題,但對存在x∈[a,b],使f(x)≤g(x)成立,則為存在性問題,即f(x)min≤g(x)max,應特別注意兩函數中的最大值與最小值的關系。

  15、忽視三視圖中的實、虛線致誤

  三視圖是根據正投影原理進行繪制,嚴格按照“長對正,高平齊,寬相等”的規則去畫,若相鄰兩物體的表面相交,表面的交線是它們的原分界線,且分界線和可視輪廓線都用實線畫出,不可見的輪廓線用虛線畫出,這一點很容易疏忽。

  16、面積體積計算轉化不靈活致誤

  面積、體積的計算既需要學生有扎實的基礎知識,又要用到一些重要的思想方法,是高考考查的重要題型。因此要熟練掌握以下幾種常用的思想方法。(1)還臺為錐的思想:這是處理臺體時常用的思想方法。(2)割補法:求不規則圖形面積或幾何體體積時常用。(3)等積變換法:充分利用三棱錐的任意一個面都可作為底面的特點,靈活求解三棱錐的體積。(4)截面法:尤其是關于旋轉體及與旋轉體有關的組合問題,常畫出軸截面進行分析求解。

  17、忽視基本不等式應用條件致誤

  利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數的最值時,務必注意a,b為正數(或a,b非負),ab或a+b其中之一應是定值,特別要注意等號成立的條件。對形如y=ax+bx(a,b>0)的函數,在應用基本不等式求函數最值時,一定要注意ax,bx的符號,必要時要進行分類討論,另外要注意自變量x的取值范圍,在此范圍內等號能否取到。

【數學的知識點總結】相關文章:

初中數學的知識點總結03-11

數學知識點總結09-09

數學重要知識點總結08-23

中考數學的知識點總結05-22

數學知識點總結11-07

初中數學的知識點總結09-19

初中數學的知識點總結06-21

關于數學的知識點總結06-28

數學高二知識點總結03-07

久久综合国产中文字幕,久久免费视频国产版原创视频,欧美日韩亚洲国内综合网香蕉,久久久久久久久久国产精品免费
亚洲另类中文日韩 | 日韩午夜精品一区二区三区 | 亚洲字字幕在线中文乱码 | 中文字幕少妇激情在线看 | 永久免费在线观看全网站 | 在线观看AV免费网址 |