高一數學必修一知識點總結實用(15篇)
總結就是對一個時期的學習、工作或其完成情況進行一次全面系統的回顧和分析的書面材料,它能夠使頭腦更加清醒,目標更加明確,是時候寫一份總結了。你所見過的總結應該是什么樣的?下面是小編精心整理的高一數學必修一知識點總結,供大家參考借鑒,希望可以幫助到有需要的朋友。
高一數學必修一知識點總結1
高一數學必修一知識點
指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.
當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand).
當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數時,當是偶數時,
2.分數指數冪
正數的分數指數冪的意義,規定:
0的正分數指數冪等于0,0的負分數指數冪沒有意義
指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪.
3.實數指數冪的運算性質
(二)指數函數及其性質
1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質
高一上冊數學必修一知識點梳理
空間幾何體表面積體積公式:
1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、a-邊長,S=6a2,V=a3
4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱錐S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)
11、r-底半徑h-高V=πr^2h/3
12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
16、圓環體R-環體半徑D-環體直徑r-環體截面半徑d-環體截面直徑V=2π2Rr2=π2Dd2/4
17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
人教版高一數學必修一知識點梳理
1、柱、錐、臺、球的結構特征
(1)棱柱:
定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。
幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三棱錐、四棱錐、五棱錐等
表示:用各頂點字母,如五棱錐
幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。
(3)棱臺:
定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。
分類:以底面多邊形的邊數作為分類的標準分為三棱態、四棱臺、五棱臺等
表示:用各頂點字母,如五棱臺
幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。
幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。
(6)圓臺:
定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:
定義:以半圓的.直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;
側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:
①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
高一數學必修一知識點總結2
一、集合及其表示
1、集合的含義:
“集合”這個詞首先讓我們想到的是上體育課或者開會時老師經常喊的“全體集合”。數學上的“集合”和這個意思是一樣的,只不過一個是動詞一個是名詞而已。
所以集合的含義是:某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那么所有高一二班的同學就構成了一個集合,每一個同學就稱為這個集合的元素。
2、集合的表示
通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。
有一些特殊的集合需要記憶:
非負整數集(即自然數集)N正整數集N_或N+
整數集Z有理數集Q實數集R
集合的表示方法:列舉法與描述法。
①列舉法:{a,b,c……}
②描述法:將集合中的元素的公共屬性描述出來。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}
③語言描述法:例:{不是直角三角形的三角形}
例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
強調:描述法表示集合應注意集合的代表元素
A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數組元素(x,y),集合B中只有元素y。
3、集合的三個特性
(1)無序性
指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。
例題:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B
注意:該題有兩組解。
(2)互異性
指集合中的元素不能重復,A={2,2}只能表示為{2}
(3)確定性
集合的確定性是指組成集合的元素的性質必須明確,不允許有模棱兩可、含混不清的。情況。
集合的含義
集合的中元素的三個特性:
元素的確定性如:世界上的山
元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3、集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:
非負整數集(即自然數集)記作:N
正整數集NxN+整數集Z有理數集Q實數集R
列舉法:{a,b,c……}
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。{x(R|x—3>2},{x|x—3>2}
語言描述法:例:{不是直角三角形的三角形}
Venn圖:
4、集合的分類:
有限集含有有限個元素的集合
無限集含有無限個元素的集合
空集不含任何元素的集合例:{x|x2=—5}
對數函數
對數函數的一般形式為,它實際上就是指數函數的反函數。因此指數函數里對于a的規定,同樣適用于對數函數。
右圖給出對于不同大小a所表示的函數圖形:
可以看到對數函數的圖形只不過的指數函數的圖形的關于直線y=x的對稱圖形,因為它們互為反函數。
(1)對數函數的定義域為大于0的實數集合。
(2)對數函數的值域為全部實數集合。
(3)函數總是通過(1,0)這點。
(4)a大于1時,為單調遞增函數,并且上凸;a小于1大于0時,函數為單調遞減函數,并且下凹。
(5)顯然對數函數。
1、函數零點的定義
(1)對于函數)(xfy,我們把方程0)(xf的實數根叫做函數)(xfy)的零點。
(2)方程0)(xf有實根函數(yfx)的圖像與x軸有交點函數(yfx)有零點。因此判斷一個函數是否有零點,有幾個零點,就是判斷方程0)(xf是否有實數根,有幾個實數根。函數零點的求法:解方程0)(xf,所得實數根就是(fx)的零點(3)變號零點與不變號零點
①若函數(fx)在零點0x左右兩側的函數值異號,則稱該零點為函數(fx)的變號零點。②若函數(fx)在零點0x左右兩側的函數值同號,則稱該零點為函數(fx)的不變號零點。
③若函數(fx)在區間,ab上的圖像是一條連續的曲線,則0
2、函數零點的判定
(1)零點存在性定理:如果函數)(xfy在區間],[ba上的圖象是連續不斷的曲線,并且有(fa)(fb),那么,函數(xfy)在區間,ab內有零點,即存在,(0bax,使得0)(0xf,這個0x也就是方程0)(xf的根。
(2)函數)(xfy零點個數(或方程0)(xf實數根的個數)確定方法
①代數法:函數)(xfy的零點0)(xf的根;②(幾何法)對于不能用求根公式的方程,可以將它與函數)(xfy的圖象聯系起來,并利用函數的性質找出零點。
(3)零點個數確定
0)(xfy有2個零點0)(xf有兩個不等實根;0)(xfy有1個零點0)(xf有兩個相等實根;0)(xfy無零點0)(xf無實根;對于二次函數在區間,ab上的零點個數,要結合圖像進行確定。
3、二分法
(1)二分法的定義:對于在區間[,]ab上連續不斷且(fa)(fb)的函數(yfx),通過不斷地把函數(yfx)的零點所在的區間一分為二,使區間的兩個端點逐步逼近零點,進而得到零點的近似值的方法叫做二分法;
(2)用二分法求方程的近似解的步驟:
①確定區間[,]ab,驗證(fa)(fb)給定精確度e;
②求區間(,)ab的中點c;③計算(fc);
(ⅰ)若(fc),則c就是函數的零點;
(ⅱ)若(fa)(fc),則令bc(此時零點0(,)xac);(ⅲ)若(fc)(fb),則令ac(此時零點0(,)xcb);
④判斷是否達到精確度e,即ab,則得到零點近似值為a(或b);否則重復②至④步。
集合間的基本關系
1、子集,A包含于B,記為:,有兩種可能
(1)A是B的一部分,
(2)A與B是同一集合,A=B,A、B兩集合中元素都相同。
反之:集合A不包含于集合B,記作。
如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三個集合的關系可以表示為,,B=C。A是C的子集,同時A也是C的真子集。
2、真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)
3、不含任何元素的'集合叫做空集,記為Φ。Φ是任何集合的子集。
4、有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-2個非空真子集。如A={1,2,3,4,5},則集合A有25=32個子集,25-1=31個真子集,25-2=30個非空真子集。
例:集合共有個子集。(13年高考第4題,簡單)
練習:A={1,2,3},B={1,2,3,4},請問A集合有多少個子集,并寫出子集,B集合有多少個非空真子集,并將其寫出來。
解析:
集合A有3個元素,所以有23=8個子集。分別為:①不含任何元素的子集Φ;②含有1個元素的子集{1}{2}{3};③含有兩個元素的子集{1,2}{1,3}{2,3};④含有三個元素的子集{1,2,3}。
集合B有4個元素,所以有24-2=14個非空真子集。具體的子集自己寫出來。
此處這么羅嗦主要是為了讓同學們注意寫的順序,數學就是要講究嚴謹性和邏輯性的。一定要養成自己的邏輯習慣。如果就是為了提高計算能力倒不如直接去菜場賣菜算了,絕對能飛速提高的,那學數學也沒什么必要了。
一、函數模型及其應用
本節主要包括函數的模型、函數的應用等知識點。主要是理解函數解應用題的一般步驟靈活利用函數解答實際應用題。
1、常見的函數模型有一次函數模型、二次函數模型、指數函數模型、對數函數模型、分段函數模型等。
2、用函數解應用題的基本步驟是:
(1)閱讀并且理解題意。(關鍵是數據、字母的實際意義);
(2)設量建模;
(3)求解函數模型;
(4)簡要回答實際問題。
常見考法:
本節知識在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數和較復雜的函數的最值等問題,屬于拔高題,難度較大。
誤區提醒:
1、求解應用性問題時,不僅要考慮函數本身的定義域,還要結合實際問題理解自變量的取值范圍。
2、求解應用性問題時,首先要弄清題意,分清條件和結論,抓住關鍵詞和量,理順數量關系,然后將文字語言轉化成數學語言,建立相應的數學模型。
【典型例題】
例1:
(1)某種儲蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數x之間的函數關系式,并計算5個月后的本息和(不計復利)。
(2)按復利計算利息的一種儲蓄,本金為a元,每期利率為r,設本利和為y,存期為x,寫出本利和y隨存期x變化的函數式。如果存入本金1000元,每期利率2。25%,試計算5期后的本利和是多少?解:(1)利息=本金×月利率×月數。y=100+100×0。36%·x=100+0。36x,當x=5時,y=101。8,∴5個月后的本息和為101。8元。
例2:
某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式。
(2)該企業已籌集到10萬元資金,并全部投入A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能是企業獲得利潤,其利潤約為多少萬元。(精確到1萬元)。
集合
集合具有某種特定性質的事物的總體。這里的“事物”可以是人,物品,也可以是數學元素。例如:
1、分散的人或事物聚集到一起;使聚集:緊急~。
2、數學名詞。一組具有某種共同性質的數學元素:有理數的~。
3、口號等等。集合在數學概念中有好多概念,如集合論:集合是現代數學的基本概念,專門研究集合的理論叫做集合論。康托(Cantor,G.F.P.,1845年—1918年,德國數學家先驅,是集合論的,目前集合論的基本思想已經滲透到現代數學的所有領域。
集合,在數學上是一個基礎概念。什么叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義”。集合
集合是把人們的直觀的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。
元素與集合的關系
元素與集合的關系有“屬于”與“不屬于”兩種。
集合與集合之間的關系
某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。『說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作A?B。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作A?B。中學教材課本里將?符號下加了一個≠符號(如右圖),不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集。』
集合的幾種運算法則
并集:以屬于A或屬于B的元素為元素的集合稱為A與B的并(集),記作A∪B(或B∪A),讀作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以屬于A且屬于B的元差集表示
素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那么因為A和B中都有1,5,所以A∩B={1,5}。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那么說A∪B={1,2,3,5}。圖中的陰影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍數的數有多少個。結果是3,5,7每項減集合
1再相乘。48個。對稱差集:設A,B為集合,A與B的對稱差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對稱差運算的另一種定義是:A?B=(A∪B)-(A∩B)無限集:定義:集合里含有無限個元素的集合叫做無限集有限集:令N_是正整數的全體,且N_n={1,2,3,……,n},如果存在一個正整數n,使得集合A與N_n一一對應,那么A叫做有限集合。差:以屬于A而不屬于B的元素為元素的集合稱為A與B的差(集)。記作:AB={x│x∈A,x不屬于B}。注:空集包含于任何集合,但不能說“空集屬于任何集合”。補集:是從差集中引出的概念,指屬于全集U不屬于集合A的元素組成的集合稱為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬于A}空集也被認為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中沒有的3,4就是CuA,是A的補集。CuA={3,4}。在信息技術當中,常常把CuA寫成~A。
集合元素的性質
1.確定性:每一個對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如“個子高的同學”“很小的數”都不能構成集合。這個性質主要用于判斷一個集合是否能形成集合。
2.獨立性:集合中的元素的個數、集合本身的個數必須為自然數。
3.互異性:集合中任意兩個元素都是不同的對象。如寫成{1,1,2},等同于{1,2}。互異性使集合中的元素是沒有重復,兩個相同的對象在同一個集合中時,只能算作這個集合的一個元素。
4.無序性:{a,b,c}{c,b,a}是同一個集合。
5.純粹性:所謂集合的純粹性,用個例子來表示。集合A={x|x
高一數學必修一知識點總結3
空間兩條直線只有三種位置關系:平行、相交、異面
1、按是否共面可分為兩類:
1共面:平行、相交
2異面:
異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。
兩異面直線所成的角:范圍為0°,90°esp.空間向量法
兩異面直線間距離:公垂線段有且只有一條esp.空間向量法
2、若從有無公共點的角度看可分為兩類:
1有且僅有一個公共點——相交直線;2沒有公共點——平行或異面
直線和平面的位置關系:
直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行
①直線在平面內——有無數個公共點
②直線和平面相交——有且只有一個公共點
直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。
空間向量法找平面的法向量
規定:a、直線與平面垂直時,所成的角為直角,b、直線與平面平行或在平面內,所成的角為0°角
由此得直線和平面所成角的取值范圍為[0°,90°]
最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角
三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直
直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面。
直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點
直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。
直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行。
多面體
1、棱柱
棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質
1側棱都相等,側面是平行四邊形
2兩個底面與平行于底面的截面是全等的多邊形
3過不相鄰的兩條側棱的截面對角面是平行四邊形
2、棱錐
棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐
棱錐的性質:
1側棱交于一點。側面都是三角形
2平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方
3、正棱錐
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的`棱錐叫做正棱錐。
正棱錐的性質:
1各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
3多個特殊的直角三角形
a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
兩個平面的位置關系
1兩個平面互相平行的定義:空間兩平面沒有公共點
2兩個平面的位置關系:
兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線。
a、平行
兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行于另一個平面,那么這兩個平面平行。
兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。b、相交
二面角
1半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
2二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
3二面角的棱:這一條直線叫做二面角的棱。
4二面角的面:這兩個半平面叫做二面角的面。
5二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
6直二面角:平面角是直角的二面角叫做直二面角。
兩平面垂直
兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥
兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直
兩個平面垂直的性質定理:如果兩個平面互相垂直,那么在一個平
二面角求法:直接法作出平面角、三垂線定理及逆定理、面積射影定理、空間向量之法向量法注意求出的角與所需要求的角之間的等補關系。
高一數學必修一知識點總結4
【基本初等函數】
一、指數函數
(一)指數與指數冪的運算
1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈
當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數。此時,的次方根用符號表示。式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand)。
當是偶數時,正數的次方根有兩個,這兩個數互為相反數。此時,正數的正的次方根用符號表示,負的次方根用符號—表示。正的次方根與負的次方根可以合并成±(>0)。由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數時,當是偶數時,
2、分數指數冪
正數的分數指數冪的意義,規定:
0的正分數指數冪等于0,0的`負分數指數冪沒有意義
指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪。
3、實數指數冪的運算性質
(二)指數函數及其性質
1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R。
注意:指數函數的底數的取值范圍,底數不能是負數、零和1。
2、指數函數的圖象和性質
高一數學必修一知識點總結5
1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
解析式
頂點坐標
對稱軸
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h<0時,則向左平行移動|h|個單位得到.
當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;
當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;
當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;
當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.
4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點間的距離AB=|x?-x?|
當△=0.圖象與x軸只有一個交點;
當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.
5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.
頂點的'橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.
6.用待定系數法求二次函數的解析式
(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.
高一數學必修一知識點總結6
【公式一】
設α為任意角,終邊相同的角的同一三角函數的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
【公式二】
設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
【公式三】
任意角α與-α的三角函數值之間的關系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
【公式四】
利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
【公式五】
利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
【公式六】
π/2±α及3π/2±α與α的三角函數值之間的關系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
【高一數學函數復習資料】
一、定義與定義式:
自變量x和因變量y有如下關系:
y=kx+b
則此時稱y是x的一次函數。
特別地,當b=0時,y是x的正比例函數。
即:y=kx(k為常數,k≠0)
二、一次函數的性質:
的變化值與對應的x的變化值成正比例,比值為k
即:y=kx+b(k為任意不為零的實數b取任何實數)
當x=0時,b為函數在y軸上的截距。
三、一次函數的圖像及性質:
作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)
性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。
,b與函數圖像所在象限:
當k>0時,直線必通過一、三象限,y隨x的.增大而增大;
當k
當b>0時,直線必通過一、二象限;
當b=0時,直線通過原點
當b
特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。
這時,當k>0時,直線只通過一、三象限;當k
四、確定一次函數的表達式:
已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。
(1)設一次函數的表達式(也叫解析式)為y=kx+b。
(2)因為在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②
(3)解這個二元一次方程,得到k,b的值。
(4)最后得到一次函數的表達式。
五、一次函數在生活中的應用:
當時間t一定,距離s是速度v的一次函數。s=vt。
當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S。g=S-ft。
六、常用公式:(不全,希望有人補充)
求函數圖像的k值:(y1-y2)/(x1-x2)
求與x軸平行線段的中點:|x1-x2|/2
求與y軸平行線段的中點:|y1-y2|/2
求任意線段的長:√(x1-x2)^2+(y1-y2)^2(注:根號下(x1-x2)與(y1-y2)的平方和)
高一數學必修一知識點總結7
知識點總結
本節知識包括函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱性和函數的圖象等知識點。函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱性是學習函數的圖象的'基礎,函數的圖象是它們的綜合。所以理解了前面的幾個知識點,函數的圖象就迎刃而解了。
一、函數的單調性
1、函數單調性的定義
2、函數單調性的判斷和證明:(1)定義法 (2)復合函數分析法 (3)導數證明法 (4)圖象法
二、函數的奇偶性和周期性
1、函數的奇偶性和周期性的定義
2、函數的奇偶性的判定和證明方法
3、函數的周期性的判定方法
三、函數的圖象
1、函數圖象的作法 (1)描點法 (2)圖象變換法
2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。
常見考法
本節是段考和高考必不可少的考查內容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數學的每一章聯合考查,多屬于拔高題。多考查函數的單調性、最值和圖象等。
誤區提醒
1、求函數的單調區間,必須先求函數的定義域,即遵循“函數問題定義域優先的原則”。
2、單調區間必須用區間來表示,不能用集合或不等式,單調區間一般寫成開區間,不必考慮端點問題。
3、在多個單調區間之間不能用“或”和“ ”連接,只能用逗號隔開。
4、判斷函數的奇偶性,首先必須考慮函數的定義域,如果函數的定義域不關于原點對稱,則函數一定是非奇非偶函數。
5、作函數的圖象,一般是首先化簡解析式,然后確定用描點法或圖象變換法作函數的圖象。
高一數學必修一知識點總結8
解三角形
(1)正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題.
(2)應用
能夠運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關的實際問題.
數列
(1)數列的概念和簡單表示法
①了解數列的.概念和幾種簡單的表示方法(列表、圖象、通項公式).
②了解數列是自變量為正整數的一類函數.
(2)等差數列、等比數列
①理解等差數列、等比數列的概念.
②掌握等差數列、等比數列的通項公式與前項和公式.
③能在具體的問題情境中,識別數列的等差關系或等比關系,并能用有關知識解決相應的問題.
④了解等差數列與一次函數、等比數列與指數函數的關系.
高一數學必修一知識點總結9
第一章:解三角形
1、正弦定理:在C中,a、b、c分別為角、、C的對邊,R為C的外接圓的半徑,則有asinbsina2RcsinC2R.
2、正弦定理的變形公式:①a2Rsin,b2Rsin,c2RsinC;②sin,sinb2R,sinCc2R;(正弦定理的變形經常用在有三角函數的等式中)③a:b:csin:sin:sinC;④abcsinsinsinCsinsinsinC111bcsinabsinCacsin.222abc.
3、三角形面積公式:SC
4、余定理:在C中,有a2b2c22bccos,b2a2c22accos,cab2abcosC.222
5、余弦定理的推論:cosbca2bc222,cosacb2ac222,cosCabc2ab222.
6、設a、b、c是C的角、、C的對邊,則:①若a2b2c2,則C90為直角三角形;②若a2b2c2,則C90為銳角三角形;③若a2b2c2,則C90為鈍角三角形.
第二章:數列
1、數列:按照一定順序排列著的一列數.
2、數列的項:數列中的每一個數.
3、有窮數列:項數有限的數列.
4、無窮數列:項數無限的數列.
5、遞增數列:從第2項起,每一項都不小于它的前一項的數列.
6、遞減數列:從第2項起,每一項都不大于它的前一項的數列.
7、常數列:各項相等的數列.
8、擺動數列:從第2項起,有些項大于它的前一項,有些項小于它的前一項的數列.
9、數列的通項公式:表示數列an的第n項與序號n之間的關系的公式.
10、數列的遞推公式:表示任一項an與它的前一項an1(或前幾項)間的關系的公式.
11、如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,則這個數列稱為等差數列,這個常數稱為等差數列的公差.
12、由三個數a,,b組成的等差數列可以看成最簡單的等差數列,則稱為a與b的等差中項.若bac2,則稱b為a與c的等差中項.
13、若等差數列an的首項是a1,公差是d,則ana1n1d.通項公式的變形:①anamnmd;②a1ann1d;③d⑤danamnmana1n1;④nana1d1;
14、若an是等差數列,且mnpq(m、n、p、q),則amanapaq;若an是等差數列,且2npq(n、p、q),則2anapaq;下角標成等差數列的項仍是等差數列;連續m項和構成的數列成等差數列。
15、等差數列的前n項和的公式:①Snna1an2;②Snna1nn12d.
16、等差數列的前n項和的性質:①若項數為2nn,則S2nnanan1,且S偶S奇nd,S奇S偶anan1.②若項數為2n1n,則S2n12n1an,且S奇S偶an,S奇S偶nn1(其中S奇nan,S偶n1an).
17、如果一個數列從第2項起,每一項與它的前一項的比等于同一個常數,則這個數列稱為等比數列,這個常數稱為等比數列的公比.
18、在a與b中間插入一個數G,使a,G,b成等比數列,則G稱為a與b的等比中項.若G2ab,則稱G為a與b的等比中項.
19、若等比數列an的首項是a1,公比是q,則ana1q.
20、通項公式的'變形:①anamq;②a1anqn1;③qn1ana1;④qnmanam.
21、若an是等比數列,且mnpq(m、n、p、q),則amanapaq;若an是等比數列,且2npq(n、p、q),則anapaq;下角標成等差數列的項仍是等比數列;連續m2項和構成的數列成等比數列。
22、等比數列an的前n項和的公式:Sna11qnaaq.1nq11q1qq1時,Sna11qa11qq,即常數項與q項系數互為相反數。
23、等比數列的前n項和的性質:①若項數為2nn,則SS偶奇q.n②SnmSnqSm.③Sn,S2nSn,S3nS2n成等比數列.
24、an與Sn的關系:anSnSn1S1n2n1
一些方法:
一、求通項公式的方法:
1、由數列的前幾項求通項公式:待定系數法
①若相鄰兩項相減后為同一個常數設為anknb,列兩個方程求解;
②若相鄰兩項相減兩次后為同一個常數設為anan2bnc,列三個方程求解;③若相鄰兩項相減后相除后為同一個常數設為anaq
2、由遞推公式求通項公式:
①若化簡后為an1and形式,可用等差數列的通項公式代入求解;②若化簡后為an1anf(n),形式,可用疊加法求解;
③若化簡后為an1anq形式,可用等比數列的通項公式代入求解;
④若化簡后為an1kanb形式,則可化為(an1x)k(anx),從而新數列{anx}是等比數列,用等比數列求解{anx}的通項公式,再反過來求原來那個。(其中x是用待定系數法來求得)3、由求和公式求通項公式:
①a1S1②anSnSn1③檢驗a1是否滿足an,若滿足則為an,不滿足用分段函數寫。
4、其他
(1)anan1fn形式,fn便于求和,方法:迭加;
例如:anan1n1有:anan1n1a2a13a3a24anan1n1各式相加得ana134n1a1nb,q為相除后的常數,列兩個方程求解;
n4n1(2)anan12anan1形式,同除以anan1,構造倒數為等差數列;
anan1anan121an1例如:anan12anan1,則1,即為以-2為公差的等差數列。anan1(3)anqan1m形式,q1,方法:構造:anxqan1x為等比數列;
例如:an2an12,通過待定系數法求得:an22an12,即an2等比,公比為2。(4)anqan1pnr形式:構造:anxnyqan1xn1y為等比數列;(5)anqan1p形式,同除p,轉化為上面的幾種情況進行構造;因為anqan1pn,則anpnqan1ppn11,若qp1轉化為(1)的方法,若不為1,轉化為(3)的方法
二、等差數列的求和最值問題:(二次函數的配方法;通項公式求臨界項法)
①若②若ak0,則Sn有最大值,當n=k時取到的最大值k滿足d0a0k1a10a10ak0,則Sn有最小值,當n=k時取到的最大值k滿足d0a0k1
三、數列求和的方法:
①疊加法:倒序相加,具備等差數列的相關特點的,倒序之后和為定值;
②錯位相減法:適用于通項公式為等差的一次函數乘以等比的數列形式,如:an2n13;n③分式時拆項累加相約法:適用于分式形式的通項公式,把一項拆成兩個或多個的差的形式。如:an1nn11n1n1,an12n12n1111等;22n12n1④一項內含有多部分的拆開分別求和法:適用于通項中能分成兩個或幾個可以方便求和的部分,如:an2n1等;
四、綜合性問題中
①等差數列中一些在加法和乘法中設一些數為ad和ad類型,這樣可以相加約掉,相乘為平方差;②等比數列中一些在加法和乘法中設一些數為aq和aq類型,這樣可以相乘約掉。
第三章:不等式
1、ab0ab;ab0ab;ab0ab.比較兩個數的大小可以用相減法;相除法;平方法;開方法;倒數法等等。
2、不等式的性質:①abba;②ab,bcac;③abacbc;④ab,c0acbc,ab,c0acbc;⑤ab,cdacbd;⑥ab0,cd0acbd;⑦ab0ab⑧ab0nnnn,n1;anbn,n1.
3、一元二次不等式:只含有一個未知數,并且未知數的最高次數是2的不等式.
4、二次函數的圖象、一元二次方程的根、一元二次不等式的解集間的關系:判別式b4ac201二次函數yaxbxc2a0的圖象有兩個相異實數根一元二次方程axbxc02有兩個相等實數根a0的根axbxc0一元二次不等式的解集2x1,2b2ax1x2b2a沒有實數根x1x2a0axbxc02xxx1或xx2bxx2aRa0xx1xx2
5、二元一次不等式:含有兩個未知數,并且未知數的次數是1的不等式.
6、二元一次不等式組:由幾個二元一次不等式組成的不等式組.
7、二元一次不等式(組)的解集:滿足二元一次不等式組的x和y的取值構成有序數對x,y,所有這樣的有序數對x,y構成的集合.
8、在平面直角坐標系中,已知直線xyC0,坐標平面內的點x0,y0.①若0,x0y0C0,則點x0,y0在直線xyC0的上方.②若0,x0y0C0,則點x0,y0在直線xyC0的下方.
9、在平面直角坐標系中,已知直線xyC0.①若0,則xyC0表示直線xyC0上方的區域;xyC0表示直線xyC0下方的區域.②若0,則xyC0表示直線xyC0下方的區域;xyC0表示直線xyC0上方的區域.
10、線性約束條件:由x,y的不等式(或方程)組成的不等式組,是x,y的線性約束條件.目標函數:欲達到最大值或最小值所涉及的變量x,y的解析式.線性目標函數:目標函數為x,y的一次解析式.線性規劃問題:求線性目標函數在線性約束條件下的最大值或最小值問題.可行解:滿足線性約束條件的解x,y.可行域:所有可行解組成的集合.最優解:使目標函數取得最大值或最小值的可行解.
11、設a、b是兩個正數,則ab稱為正數a、b的算術平均數,ab稱為正數a、b的幾何平均數.
12、均值不等式定理:若a0,b0,則ab2ab,即ab2ab.
13、常用的基本不等式:①a2b22aba,bR;22②abab2a,bR;③abab2a2b2ab22a0,b0;④22a,bR.
14、極值定理:設x、y都為正數,則有s(和為定值),則當xy時,積xy取得最大值s2⑴若xy.4⑵若xyp(積為定值),則當xy時,和xy取得最小值2p.
高一數學必修一知識點總結10
棱錐
棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐
棱錐的的性質:
(1)側棱交于一點。側面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方
正棱錐
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質:
(1)各側棱交于一點且相等,各側面都是全等的`等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個特殊的直角三角形
esp:
a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
高一數學必修一知識點總結11
1、正弦定理:在C中,a、b、c分別為角、、C的對邊,R為C的外接圓的半徑,則有asinbsincsinC2R.
2、正弦定理的變形公式:①a2Rsin,b2Rsin,c2RsinC;②sin④a2R,sinb2R,sinCabsinc2R;③a:b:csin:sin:sinC;csinCabcsinsinsinCsin.(正弦定理主要用來解決兩類問題:1、已知兩邊和其中一邊所對的角,求其余的量。2、已知兩角和一邊,求其余的量。)⑤對于已知兩邊和其中一邊所對的角的題型要注意解的情況。(一解、兩解、無解三中情況)如:在三角形ABC中,已知a、b、A(A為銳角)求B。具體的做法是:數形結合思想畫出圖:法一:把a擾著C點旋轉,看所得軌跡以AD有無交點:當無交點則B無解、當有一個交點則B有一解、當有兩個交點則B有兩個解。法二:是算出CD=bsinA,看a的情況:當a但不能到達,在岸邊選取相距3千米的C、D兩點,并測得∠ACB=75O,∠BCD=45O,∠ADC=30O,∠ADB=45(A、B、C、D在同一平面內),求兩目標A、B之間的距離。本題解答過程略附:三角形的五個“心”;重心:三角形三條中線交點.外心:三角形三邊垂直平分線相交于一點.內心:三角形三內角的平分線相交于一點.垂心:三角形三邊上的高相交于一點.
7、數列:按照一定順序排列著的一列數.
8、數列的項:數列中的每一個數.
9、有窮數列:項數有限的數列.
10、無窮數列:項數無限的數列.
11、遞增數列:從第2項起,每一項都不小于它的前一項的數列(即:an+1>an).
12、遞減數列:從第2項起,每一項都不大于它的前一項的數列(即:an+1④nana1d1;⑤danamnm.
21、若an是等差數列,且mnpq(m、n、p、q),則amanapaq;若an是等差數列,且2npq(n、p、q),則2anapaq.
22、等差數列的前n項和的公式:①Snna1an2;②Snna1nn12d.③sna1a2an
23、等差數列的前n項和的性質:①若項數為2nn,則S2nnanan1,且S偶S奇nd,S奇S偶anan1.S奇S偶nn1②若項數為2n1n,則S2n12n1an,且S奇S偶an,S偶n1an)(其中S奇nan,
24、如果一個數列從第2項起,每一項與它的前一項的比等于同一個常數,則這個數列稱為等比數列,這個常數稱為等比數列的公比.符號表示:an1anq(注:①等比數列中不會出現值為0的項;②同號位上的值同號)注:看數列是不是等比數列有以下四種方法: 2①anan1q(n2,q為常數,且0)②anan1an1(n2,anan1an10)③ancqn(c,q為非零常數).④正數列{an}成等比的充要條件是數列{logxan}(x1)成等比數列.
25、在a與b中間插入一個數G,使a,G,b成等比數列,則G稱為a與b的等比中項.若Gab,22則稱G為a與b的等比中項.(注:由Gab不能得出a,G,b成等比,由a,G,bGab)2n1
26、若等比數列an的首項是a1,公比是q,則ana1q.
27、通項公式的變形:①anamqnm;②a1anqn1;③qn1ana1;④qnmanam.
28、若an是等比數列,且mnpq(m、n、p、q),則amanapaq;若an是等比數列,且2npq(n、p、q),則anapaq.na1q1
29、等比數列an的前n項和的公式:①Sna1qnaaq.②sn1n1q11q1q2a1a2an
30、對任意的數列{an}的前n項和Sn與通項an的關系:ans1a1(n1)snsn1(n2)
[注]:①ana1n1dnda1d(d可為零也可不為零→為等差數列充要條件(即常數列也是等差數列)→若d不為0,則是等差數列充分條件).②等差{an}前n項和Sndddd22AnBnna1n→222可以為零也可不為零→為等差的充要條件→若為零,則是等差數列的充分條件;若d不為零,則是等差數列的充分條件.
③非零常數列既可為等比數列,也可為等差數列.(不是非零,即不可能有等比數列)..附:幾種常見的數列的思想方法:⑴等差數列的前n項和為Sn,在d0時,有最大值.如何確定使Sn取最大值時的n值,有兩種方法:
d2n2一是求使an0,an10,成立的n值;二是由Sn數列通項公式、求和公式與函數對應關系如下:數列等差數列等比數列數列等差數列前n項和公式通項公式(a1d2)n利用二次函數的性質求n的值.
對應函數(時為一次函數)(指數型函數)對應函數(時為二次函數)等比數列(指數型函數)我們用函數的觀點揭開了數列神秘的“面紗”,將數列的通項公式以及前n項和看成是關于n的函數,為我們解決數列有關問題提供了非常有益的啟示。
例題:1、等差數列分析:因為中,,則.是等差數列,所以是關于n的一次函數,一次函數圖像是一條直線,則(n,m),(m,n),(m+n,)三點共線,所以利用每兩點形成直線斜率相等,即,得=0(圖像如上),這里利用等差數列通項公式與一次函數的對應關系,并結合圖像,直觀、簡潔。
例題:2、等差數列中,,前n項和為,若,n為何值時最大?
分析:等差數列前n項和可以看成關于n的二次函數=,是拋物線=上的離散點,根據題意,,則因為欲求最大。最大值,故其對應二次函數圖像開口向下,并且對稱軸為,即當時,
例題:3遞增數列,對任意正整數n,遞增得到:恒成立,設恒成立,求恒成立,即,則只需求出。,因為是遞的最大值即
分析:構造一次函數,由數列恒成立,所以可,顯然有最大值對一切對于一切,所以看成函數的取值范圍是:構造二次函數,,它的定義域是增數列,即函數為遞增函數,單調增區間為,拋物線對稱軸,因為函數f(x)為離散函數,要函數單調遞增,就看動軸與已知區間的位置。從對應圖像上看,對稱軸的左側在也可以(如圖),因為此時B點比A點高。于是,,得⑵如果數列可以看作是一個等差數列與一個等比數列的對應項乘積,求此數列前n項和可依照等比數列前n項和的推倒導方法:錯位相減求和.例如:112,314,...(2n1)12n,...⑶兩個等差數列的相同項亦組成一個新的等差數列,此等差數列的首項就是原兩個數列的第一個相同項,公差是兩個數列公差d1,d2的最小公倍數.
2.判斷和證明數列是等差(等比)數列常有三種方法:(1)定義法:對于n≥2的任意自然數,驗證anan1(anan1)為同一常數。(2)通項公式法。(3)中項公式法:驗證
2an1anan2(an1anan2)nN都成立。2am03.在等差數列{an}中,有關Sn的最值問題:(1)當a1>0,d把①式兩邊同乘2后得2sn=122232n2234n1②
用①-②,即:123nsn=122232n2①2sn=122232n2234n1②得sn12222n22(12)12n1n23nn1n2n122n2n1n1(1n)22∴sn(n1)2n12
4.倒序相加法:類似于等差數列前n項和公式的推導方法.5.常用結論1):1+2+3+...+n=n(n1)2212)1+3+5+...+(2n-1)=n3)12nn(n1)2223334)123n22216n(n1)(2n1)5)
1n(n1)1n1n11n(n2)1pq111()2nn21qp1p1q6)()(pq)
31、ab0ab;ab0ab;ab0ab.
32、不等式的性質:①abba;②ab,bcac;③abacbc;④ab,c0acbc,ab,c0acbc;⑤ab,cdacbd;nd0acabdb0a⑥;⑦⑧ab0nnbn,n1;anbn,n1.
33、一元二次不等式:只含有一個未知數,并且未知數的最高次數是2的不等式.
34、含絕對值不等式、一元二次不等式的解法及延伸1.整式不等式(高次不等式)的解法
穿根法(零點分段法)求解不等式:a0xa1xnn1a2xn2an0(0)(a00)
解法:①將不等式化為a0(x-x1)(x-x2)(x-xm)>0(0”,則找“線”在x軸上方的區間;若不等式是“
由圖可看出不等式x23x26x80的解集為:
x|2x1,或x4
(x1)(x2)(x5)(x6)(x4)0的解集。
例題:求解不等式
解:略
一元二次不等式的求解:
特例①一元一次不等式ax>b解的討論;
②一元二次不等式ax+bx+c>0(a>0)解的討論.
二次函數yax22
000bxc有兩相異實根x1,x2(x1x2)(a0)的'圖象一元二次方程ax2有兩相等實根x1x2b2abxc0a0的根2無實根Raxbxc0(a0)的解集axbxc0(a0)的解集2xxx或xx12bxx2axx1xx2對于a0(或
f(x)g(x)(2)轉化為整式不等式(組)
1xf(x)g(x)0f(x)g(x)0;f(x)g(x)00g(x)0g(x)
f(x)例題:求解不等式:解:略例題:求不等式
xx11
1的解集。
3.含絕對值不等式的解法:基本形式:
①型如:|x|<a(a>0)的不等式的解集為:x|axa②型如:|x|>a(a>0)的不等式的解集為:x|xa,或xa變型:
其中-c3x23x23x2(x2)(x3)10xR③當x2時,(去絕對值符號)原不等式化為:x2x292x9(x2)(x3)102x2由①②③得原不等式的解集為:x|112x9(注:是把①②③的解集并在一起)2y函數圖像法:
令f(x)|x2||x3|
2x1(x3)則有:f(x)5(3x2)
2x1(x2)f(x)=1051123o292x在直角坐標系中作出此分段函數及f(x)10的圖像如圖11292由圖像可知原不等式的解集為:x|x4.一元二次方程ax2+bx+c=0(a>0)的實根的分布常借助二次函數圖像來分析:y設ax2+bx+c=0的兩根為、,f(x)=ax2+bx+c,那么:0①若兩根都大于0,即0,0,則有0
0o對稱軸x=b2ax
0b0②若兩根都小于0,即0,0,則有2af(0)0y
11
對稱軸x=b2aox
③若兩根有一根小于0一根大于0,即0,則有f(0)0
④若兩根在兩實數m,n之間,即mn,
0bnm則有2af(m)0of(n)0yoxymX=b2anx⑤若兩個根在三個實數之間,即mtn,
yf(m)0則有f(t)0
f(n)0
常由根的分布情況來求解出現在a、b、c位置上的參數
例如:若方程x2(m1)xm2m30有兩個正實數根,求m的取值范圍。
4(m1)24(m22m3)00m1m1m3解:由①型得02(m1)00m1,或m32m2m3022omX=tb2anx所以方程有兩個正實數根時,m3。
又如:方程xxm10的一根大于1,另一根小于1,求m的范圍。
55220m(1)4(m1)02解:因為有兩個不同的根,所以由21m122f(1)011m101m122
35、二元一次不等式:含有兩個未知數,并且未知數的次數是1的不等式.
36、二元一次不等式組:由幾個二元一次不等式組成的不等式組.
37、二元一次不等式(組)的解集:滿足二元一次不等式組的x和y的取值構成有序數對x,y,所有這樣的有序數對x,y構成的集合.
38、在平面直角坐標系中,已知直線xyC0,坐標平面內的點x0,y0.①若0,x0y0C0,則點x0,y0在直線xyC0的上方.②若0,x0y0C0,則點x0,y0在直線xyC0的下方.
39、在平面直角坐標系中,已知直線xyC0.(一)由B確定:①若0,則xyC0表示直線xyC0上方的區域;xyC0表示直線xyC0下方的區域.
②若0,則xyC0表示直線xyC0下方的區域;xyC0表示直線 xyC0上方的區域.
(二)由A的符號來確定:先把x的系數A化為正后,看不等號方向:①若是“>”號,則xyC0所表示的區域為直線l:xyC0的右邊部分。②若是“線性規劃問題:求線性目標函數在線性約束條件下的最大值或最小值問題.可行解:滿足線性約束條件的解x,y.可行域:所有可行解組成的集合.最優解:使目標函數取得最大值或最小值的可行解.
41、設a、b是兩個正數,則ab2稱為正數a、b的算術平均數,ab稱為正數a、b的幾何平均數.ab2ab.
42、均值不等式定理:若a0,b0,則ab2ab,即
43、常用的基本不等式:①ab2aba,bR;②ab222ab222a,bR;③abab2a0,b0;2④ab222ab2a,bR.
44、極值定理:設x、y都為正數,則有:
⑴若xys(和為定值),則當xy時,積xy取得最大值s42.⑵若xyp(積為定值),則當xy時,和xy取得最小值2例題:已知x解:∵x5454p.14x5,求函數f(x)4x2的最大值。
,∴4x50由原式可以化為:f(x)4x55214x5(54x)154x3[(54x)154x]3(54x)154x3132當54x154x2,即(54x)1x1,或x32(舍去)時取到“=”號也就是說當x1時有f(x)max2
高一數學必修一知識點總結12
數學是利用符號語言研究數量、結構、變化以及空間模型等概念的一門學科。小編準備了高一數學必修1期末考知識點,希望你喜歡。
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素.
2、集合的中元素的三個特性:
1.元素的確定性; 2.元素的互異性; 3.元素的無序性
說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素.
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素.
(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.
(4)集合元素的三個特性使集合本身具有了確定性和整體性.
3、集合的表示:{ } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法.
注意啊:常用數集及其記法:
非負整數集(即自然數集)記作:N
正整數集 N*或N+ 整數集Z 有理數集Q 實數集R
關于屬于的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A
列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上.
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法.用確定的條件表示某些對象是否屬于這個集合的方法.
①語言描述法:例:{不是直角三角形的三角形}
②數學式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}
4、集合的分類:
1.有限集 含有有限個元素的集合
2.無限集 含有無限個元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關系
1.包含關系子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.
反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A
2.相等關系(55,且55,則5=5)
實例:設 A={x|x2-1=0} B={-1,1} 元素相同
結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
① 任何一個集合是它本身的子集.AA
②真子集:如果AB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 AB, BC ,那么 AC
④ 如果AB 同時 BA 那么A=B
3. 不含任何元素的集合叫做空集,記為
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集.
三、集合的.運算
1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.
記作AB(讀作A交B),即AB={x|xA,且xB}.
2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}.
3、交集與并集的性質:AA = A, A=, AB = BA,AA = A,
A= A ,AB = BA.
4、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集.通常用U來表示.
(3)性質:⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U
高一數學必修一知識點總結13
不等式
不等關系
了解現實世界和日常生活中的不等關系,了解不等式(組)的實際背景.
(2)一元二次不等式
①會從實際情境中抽象出一元二次不等式模型.
②通過函數圖象了解一元二次不等式與相應的二次函數、一元二次方程的聯系.
③會解一元二次不等式,對給定的一元二次不等式,會設計求解的`程序框圖.
(3)二元一次不等式組與簡單線性規劃問題
①會從實際情境中抽象出二元一次不等式組.
②了解二元一次不等式的幾何意義,能用平面區域表示二元一次不等式組.
③會從實際情境中抽象出一些簡單的二元線性規劃問題,并能加以解決.
(4)基本不等式:
①了解基本不等式的證明過程.
②會用基本不等式解決簡單的(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點
高一數學必修一知識點總結14
集合的運算
運算類型交 集并 集補 集
定義域 R定義域 R
值域>0值域>0
在R上單調遞增在R上單調遞減
非奇非偶函數非奇非偶函數
函數圖象都過定點(0,1)函數圖象都過定點(0,1)
注意:利用函數的單調性,結合圖象還可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,則 ; 取遍所有正數當且僅當 ;
(3)對于指數函數 ,總有 ;
二、對數函數
(一)對數
1.對數的概念:
一般地,如果 ,那么數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)
說明:○1 注意底數的限制 ,且 ;
○2 ;
○3 注意對數的書寫格式.
兩個重要對數:
○1 常用對數:以10為底的對數 ;
○2 自然對數:以無理數 為底的對數的對數 .
指數式與對數式的互化
冪值 真數
= N = b
底數
指數 對數
(二)對數的運算性質
如果 ,且 , , ,那么:
○1 + ;
○2 - ;
○3 .
注意:換底公式: ( ,且 ; ,且 ; ).
利用換底公式推導下面的結論:(1) ;(2) .
(3)、重要的公式 ①、負數與零沒有對數; ②、 , ③、對數恒等式
(二)對數函數
1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變量,函數的'定義域是(0,+∞).
注意:○1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。如: , 都不是對數函數,而只能稱其為對數型函數.
○2 對數函數對底數的限制: ,且 .
2、對數函數的性質:
a>10 定義域x>0定義域x>0 值域為R值域為R 在R上遞增在R上遞減 函數圖象都過定點(1,0)函數圖象都過定點(1,0) (三)冪函數 1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數. 2、冪函數性質歸納. (1)所有的冪函數在(0,+∞)都有定義并且圖象都過點(1,1); (2) 時,冪函數的圖象通過原點,并且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸; (3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨于 時,圖象在 軸上方無限地逼近 軸正半軸. 第四章 函數的應用 一、方程的根與函數的零點 1、函數零點的概念:對于函數 ,把使 成立的實數 叫做函數 的零點。 2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。 即:方程 有實數根 函數 的圖象與 軸有交點 函數 有零點. 3、函數零點的求法: ○1 (代數法)求方程 的實數根; ○2 (幾何法)對于不能用求根公式的方程,可以將它與函數 的圖象聯系起來,并利用函數的性質找出零點. 4、二次函數的零點: 二次函數 . (1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點. (2)△=0,方程 有兩相等實根,二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點. (3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點. 5.函數的模型 二次函數 I.定義與定義表達式 一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c (a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.) 則稱y為x的二次函數。 二次函數表達式的右邊通常為二次三項式。 II.二次函數的三種表達式 一般式:y=ax^2+bx+c(a,b,c為常數,a≠0) 頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)] 交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線] 注:在3種形式的互相轉化中,有如下關系: h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a III.二次函數的圖像 在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。 IV.拋物線的`性質 1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線的交點為拋物線的頂點P。 特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0) 2.拋物線有一個頂點P,坐標為 P(-b/2a,(4ac-b^2)/4a) 當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。 3.二次項系數a決定拋物線的開口方向和大小。 當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。 |a|越大,則拋物線的開口越小。 【高一數學必修一知識點總結】相關文章: 高一數學必修知識點總結12-15 高一數學必修一知識點總結01-03 高一數學必修一知識點總結01-12 高一數學必修一知識點總結07-18 高一數學必修一知識點總結05-17 高一數學必修一知識點總結03-08 高一數學必修二知識點總結11-08 (精品)高一數學必修一知識點總結06-14 高一數學必修一知識點總結歸納04-20 高一數學必修知識點總結15篇12-15高一數學必修一知識點總結15