數學初一知識點總結[集合15篇]
總結是把一定階段內的有關情況分析研究,做出有指導性結論的書面材料,它可以幫助我們總結以往思想,發揚成績,快快來寫一份總結吧。總結怎么寫才不會千篇一律呢?下面是小編為大家整理的數學初一知識點總結,希望對大家有所幫助。
數學初一知識點總結1
整式的加減
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.
2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.
3.多項式:幾個單項式的和叫多項式.
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式.
5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式.
整式
1.整式:單項式和多項式的統稱叫整式。
2.單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。
3.系數;一個單項式中,數字因數叫做這個單項式的系數。
4、次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。
5.多項式:幾個單項式的和叫做多項式。
6.項:組成多項式的每個單項式叫做多項式的項。
7.常數項:不含字母的項叫做常數項。
8.多項式的次數:多項式中,次數的項的次數叫做這個多項式的次數。
9.同類項:多項式中,所含字母相同,并且相同字母的指數也相同的項叫做同類項。
10.合并同類項:把多項式中的同類項合并成一項,叫做合并同類項。
相交線
1、定義:兩條直線相交,所成的四個角中有一個角是直角,那么這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
2、注意:
⑴垂線是一條直線。
⑵具有垂直關系的兩條直線所成的4個角都是90。
⑶垂直是相交的特殊情況。
⑷垂直的記法:a⊥b,AB⊥CD。
3、畫已知直線的垂線有無數條。
4、過一點有且只有一條直線與已知直線垂直。
5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。
6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。
兩條直線相交有4對鄰補角。
8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。
單項式
1、都是數字與字母的乘積的代數式叫做單項式。
2、單項式的數字因數叫做單項式的系數。
3、單項式中所有字母的指數和叫做單項式的次數。
4、單獨一個數或一個字母也是單項式。
5、只含有字母因式的單項式的系數是1或―1。
6、單獨的一個數字是單項式,它的系數是它本身。
7、單獨的一個非零常數的次數是0。
8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。
9、單項式的系數包括它前面的符號。
10、單項式的系數是帶分數時,應化成假分數。
11、單項式的系數是1或―1時,通常省略數字“1”。
12、單項式的次數僅與字母有關,與單項式的系數無關。
數學最常用且非常實用的學習方法
1、預習很重要:
往往被忽略,理由:沒時間,看不懂,不必要等。預習是學習的必要過程,還是提高自學能力的好方法。
2、聽講有學問:
聽分析、聽思路、聽應用,關鍵內容一字不漏,注意記錄。
3、做好錯題本:
每個會學習的學生都會有。最好再加個“好題本”。發現許多同學沒有錯題本,或者是只做不用。這樣學習效果都不好。
4、用好課外書:
正確認識網絡課程和課外書籍,是副食,是幫助吸收的良藥,絕對不是課堂學習的替代品。
5、注意總結和反思:
知識點、解題方法和技巧、經驗和教訓。
6、接受數學思想方法的指導:
要注意數學思想和方法的指導,站得高,才能看得遠。
關于數學常見誤區有哪些
1、被動學習
許多同學進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學內容。
2、學不得法
老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結、尋找知識間的聯系,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
3、不重視基礎
一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質”,陷入題海。到正規作業或考試中不是演算出錯就是中途“卡殼”。
4、進一步學習條件不具備
高中數學與初中數學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高。
如二次函數在閉區間上的最值問題,函數值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等。客觀上這些觀點就是分化點,有的內容還是高初中教材都不講的脫節內容,如不采取補救措施,查缺補漏,分化是不可避免的。
如何整理數學學科課堂筆記
一、內容提綱。老師講課大多有提綱,并且講課時老師會將一堂課的線索脈絡、重點難點等,簡明清晰地呈現在黑板上。同時,教師會使之富有條理性和直觀性。記下這些內容提綱,便于課后復習回顧,整體把握知識框架,對所學知識做到胸有成竹、清晰完整。
二、疑難問題。將課堂上未聽懂的問題及時記下來,便于課后請教同學或老師,把問題弄懂弄通。教師在組織課堂教學時,受到時空的限制,不可能做到顧及每一位同學。相應的.,一些問題對部分學生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續加以思考和探究,加以理解和掌握,不致出現知識的斷層、方法的缺陷。
三、思路方法。對老師在課堂上介紹的解題方法和分析思路也應及時記下,課后加以消化,若有疑惑,先作獨立分析,因為有可能是自己理解錯誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對于啟迪思維,開闊視野,開發智力,培養能力,并對提高解題水平大有益處。在這基礎上,若能主動鉆研,另辟蹊徑,則更難能可貴。
四、歸納總結。注意記下老師的課后總結,這對于濃縮一堂課的內容,找出重點及各部分之間的聯系,掌握基本概念、公式、定理,尋找規律,融會貫通課堂內容都很有作用。同時,很多有經驗的老師在課后小結時,一方面是承上歸納所學內容,另一方面又是啟下布置預習任務或點明后面所要學的內容,做好筆記可以把握學習的主動權,提前作準備,做到目標任務明確。
五、錯誤反思。學習過程中不可避免地會犯這樣或那樣的錯誤,記下自己所犯的錯誤,并用紅筆醒目地加以標注,以警示自己,同時也應注明錯誤成因,正確思路及方法,在反思中成熟,在反思中提高。
數學常用解題技巧有哪些
第一,應堅持由易到難的做題順序。近年來高考數學試題的設置是8道選擇題、6道填空題、6到大題,通常稱為866結構。在實體設置的結構中有三個小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設置也是這樣的。根據這樣的試題結構,應先做前面容易的,基礎好一點的考生就先做前7個選擇,前5個填空、前5個大題,稱為是755結構。基礎差的就是644,先把自己能做的、會做的拿到手。這是第一點。
第二,審題是關鍵。把題給看清楚了再動筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個完整的解題策略,在開始寫的時候,這個時候是很快就可以完成的。
第三,屬于非智力因素導致想不起來。本來是很簡單的題比如說是做到第三題、第四題的時候不是難題,但想不起來了,卡住了,這時候怎么辦?雖然是簡單題卻不會做怎么辦?應先跳過去,不是這道題不會做嗎?后面還有很多的簡單題呢,把后面的題做一做,不要在考場上愣神,先跳過去做其他的題,等穩定下來以后再回過頭來看會頓悟,豁然開朗。
第四,做選擇題的時候應運用最好的解題方法。因為選擇題和填空題都是看結果不看過程,因此在這個過程中都應不擇手段,只要是能把正確的結論找到就行。考生常用的方法是直接法,從已知的開始也不看它的四個選項,從頭到尾寫完了之后一看答案就寫上去了。另外就是特質法(音),一些出現字母、特別是不等式,這時候給它賦一個值,代進去這時候速度會比較快,正確地找出結果來。再就是數形結合法。最后實在不行了,就將四個選項代入驗證,看看哪個符合就是哪個了。填空題用上述的直接法、特質法、數形結合法三種方法都適合。做大題的時候要特別注意解題步驟,規范答題可以減少失分。簡單地說,規范答題就是從上一步的原因到下一步的結論,這是一個必然的過程,讓誰寫、誰看都是這樣的。因為什么所以什么是一個必然的過程,這是規范答題。
數學初一知識點總結2
1、相反數
只有符號不同的兩個數叫做互為相反數,其中一個是另一個的相反數,0的相反數是0。
注意:
⑴相反數是成對出現的;
⑵相反數只有符號不同,若一個為正,則另一個為負;
⑶0的相反數是它本身;相反數為本身的數是0。
2、相反數的性質與判定
⑴、何數都有相反數,且只有一個;
⑵0的相反數是0;
⑶互為相反數的兩數和為0,和為0的兩數互為相反數,即a,b互為相反數,則a+b=0
3、相反數的幾何意義
在數軸上與原點距離相等的兩點表示的兩個數,是互為相反數;互為相反數的兩個數,在數軸上的對應點(0除外)在原點兩旁,并且與原點的.距離相等。0的相反數對應原點;原點表示0的相反數。說明:在數軸上,表示互為相反數的兩個點關于原點對稱。
4、相反數的求法
⑴求一個數的相反數,只要在它的前面添上負號“—”即可求得(如:5的相反數是—5);
⑵求多個數的和或差的相反數時,要用括號括起來再添“—”,然后化簡(如;5a+b的相反數是—(5a+b)。化簡得—5a—b);
⑶求前面帶“—”的單個數,也應先用括號括起來再添“—”,然后化簡(如:—5的相反數是—(—5),化簡得5)
5、相反數的表示方法
⑴一般地,數a的相反數是—a,其中a是任意有理數,可以是正數、負數或0。
當a>0時,—a<0(正數的相反數是負數)
當a<0時,—a>0(負數的相反數是正數)
當a=0時,—a=0,(0的相反數是0)
數學初一知識點總結3
初一數學(上)應知應會的知識點代數初步知識
1.代數式:用運算符號“+-×÷”連接數及表示數的字母的式子稱為代數式.注意:用字母表示數有一定的限制,首先字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式.2.列代數式的幾個注意事項:
(1)數與字母相乘,或字母與字母相乘通常使用“”乘,或省略不寫;(2)數與數相乘,仍應使用“×”乘,不用“”乘,也不能省略乘號;(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;
(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a.
3.幾個重要的代數式:(m、n表示整數)
(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;(2)若a、b、c是正整數,則兩位整數是:10a+b,則三位整數是:100a+10b+c;(3)若m、n是整數,則被5除商m余n的數是:5m+n;偶數是:2n,奇數是:2n+1;三個連續整數是:n-1、n、n+1;
(4)若b>0,則正數是:a2+b,負數是:-a2-b,非負數是:a2,非正數是:-a2.有理數1.有理數:
(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;(2)有理數的分類:①②
(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;
(4)自然數0和正整數;a>0a是正數;a<0a是負數;a≥0a是正數或0a是非負數;a≤0a是負數或0a是非正數.2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;(3)相反數的和為0a+b=0a、b互為相反數.4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2)絕對值可表示為:或;絕對值的問題經常分類討論;(3);;
(4)|a|是重要的非負數,即|a|≥0;注意:|a||b|=|ab|,.
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大于一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那么的倒數是;倒數是本身的數是±1;若ab=1a、b互為倒數;若ab=-1a、b互為負倒數.7.有理數加法法則:
(1)同號兩數相加,取相同的符號,并把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;(3)一個數與0相加,仍得這個數.8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).9.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b).10有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,并把絕對值相乘;(2)任何數同零相乘都得零;(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
11有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.
12.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數,.13.有理數乘方的法則:(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數時:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;(3)a2是重要的非負數,即a2≥0;若a2+|b|=0a=0,b=0;(4)據規律底數的小數點移動一位,平方數的小數點移動二位.
15.科學記數法:把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.
16.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的'精確到那一位.17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.
18.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數學計算的最重要的原則.
19.特殊值法:是用符合題目要求的數代入,并驗證題設成立而進行猜想的一種方法,但不能用于證明.整式的加減
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.3.多項式:幾個單項式的和叫多項式.
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式.
5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式.整式分類為:.
6.同類項:所含字母相同,并且相同字母的指數也相同的單項式是同類項.7.合并同類項法則:系數相加,字母與字母的指數不變.
8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.
9.整式的加減:整式的加減,實際上是在去括號的基礎上,把多項式的同類項合并.10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結果一般應該進行升冪(或降冪)排列.一元一次方程
1.等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!2.等式的性質:
等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.3.方程:含未知數的等式,叫方程.
4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:“方程的解就能代入”!5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.6.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程.
7.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).8.一元一次方程的最簡形式:ax=b(x是未知數,a、b是已知數,且a≠0).9.一元一次方程解法的一般步驟:整理方程去分母去括號移項合并同類項系數化為1(檢驗方程的解).10.列一元一次方程解應用題:
(1)讀題分析法:多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程.(2)畫圖分析法:多用于“行程問題”
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.
11.列方程解應用題的常用公式:
(1)行程問題:距離=速度時間;(2)工程問題:工作量=工效工時;(3)比率問題:部分=全體比率;
(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;(5)商品價格問題:售價=定價折,利潤=售價-成本,;
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,S正方形=a2,S環形=π(R2-r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=πR2h.
數學初一知識點總結4
第一章:豐富的圖形世界
1、幾何圖形
從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。
2、點、線、面、體
①幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。
線:面和面相交的地方是線,分為直線和曲線。
面:包圍著體的是面,分為平面和曲面。
體:幾何體也簡稱體。
②點動成線,線動成面,面動成體。
3、生活中的立體圖形
生活中的立體圖形(按名稱分)
柱:
①圓柱
②棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、……
錐:
①圓錐
②棱錐
球
4、棱柱及其有關概念:
棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。
側棱:相鄰兩個側面的交線叫做側棱。
n棱柱有兩個底面,n個側面,共(n+2)個面;3n條棱,n條側棱;2n個頂點。
5、正方體的平面展開圖:
11種(經常考:考試形式:展開的圖形能否圍成正方體;正方體對面圖案)
6、截一個正方體:
用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。
7、三視圖:
物體的三視圖指主視圖、俯視圖、左視圖。
主視圖:從正面看到的圖,叫做主視圖。
左視圖:從左面看到的圖,叫做左視圖。
俯視圖:從上面看到的圖,叫做俯視圖。
第二章:有理數及其運算
1、有理數的分類
①正有理數
有理數{ ②零
③負有理數
有理數{ ①整數
②分數
2、相反數:
只有符號不同的兩個數叫做互為相反數,零的相反數是零
3、數軸:
規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,三要素缺一不可)。任何一個有理數都可以用數軸上的一個點來表示。
4、倒數:
如果a與b互為倒數,則有ab=1,反之亦成立。倒數等于本身的數是1和—1。零沒有倒數。
5、絕對值:
在數軸上,一個數所對應的點與原點的距離,叫做該數的絕對值,(|a|≥0)。
若|a|=a,則a≥0;
若|a|=-a,則a≤0。
正數的絕對值是它本身;
負數的絕對值是它的相反數;
0的絕對值是0。
互為相反數的兩個數的絕對值相等。
6、有理數比較大小:
正數大于0,負數小于0,正數大于負數;
數軸上的兩個點所表示的數,右邊的總比左邊的大;
兩個負數,絕對值大的反而小。
7、有理數的運算:
①五種運算:加、減、乘、除、乘方
多個數相乘,積的符號由負因數的個數決定,當負因數有奇數個時,積的符號為負;當負因數有偶數個時,積的符號為正。只要有一個數為零,積就為零。
有理數加法法則:
同號兩數相加,取相同的符號,并把絕對值相加。
異號兩數相加,絕對值值相等時和為0;
絕對值不相等時,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。
一個數同0相加,仍得這個數。
互為相反數的兩個數相加和為0。
有理數減法法則:
減去一個數,等于加上這個數的相反數!
有理數乘法法則:
兩數相乘,同號得正,異號得負,并把絕對值相乘。
任何數與0相乘,積仍為0。
有理數除法法則:
兩個有理數相除,同號得正,異號得負,并把絕對值相除。
0除以任何非0的數都得0。
注意:0不能作除數。
有理數的乘方:求n個相同因數a的積的運算叫做乘方。
正數的任何次冪都是正數,負數的偶次冪是正數,負數的奇次冪是負數。
②有理數的運算順序
先算乘方,再算乘除,最后算加減,如果有括號,先算括號里面的。
③運算律(5種)
加法交換律
加法結合律
乘法交換律
乘法結合律
乘法對加法的分配律
8、科學記數法
一般地,一個大于10的數可以表示成a×
10n的形式,其中1≦n<10,n是正整數,這種記數方法叫做科學記數法。(n=整數位數—1)
第三章:整式及其加減
1、代數式
用運算符號(加、減、乘、除、乘方、開方等)把數或表示數的字母連接而成的式子叫做代數式。單獨的一個數或一個字母也是代數式。
注意:
①代數式中除了含有數、字母和運算符號外,還可以有括號;
②代數式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數式,但等號和不等號兩邊的式子一般都是代數式;
③代數式中的字母所表示的數必須要使這個代數式有意義,是實際問題的要符合實際問題的意義。
代數式的書寫格式:
①代數式中出現乘號,通常省略不寫,如vt;
②數字與字母相乘時,數字應寫在字母前面,如4a;
③帶分數與字母相乘時,應先把帶分數化成假分數。
④數字與數字相乘,一般仍用“×”號,即“×”號不省略;
⑤在代數式中出現除法運算時,一般寫成分數的形式;注意:分數線具有“÷”號和括號的雙重作用。
⑥在表示和(或)差的代數式后有單位名稱的,則必須把代數式括起來,再將單位名稱寫在式子的后面。
2、整式:單項式和多項式統稱為整式。
①單項式:
都是數字和字母乘積的形式的代數式叫做單項式。單項式中,所有字母的指數之和叫做這個單項式的次數;數字因數叫做這個單項式的系數。
注意:
單獨的一個數或一個字母也是單項式;
單獨一個非零數的次數是0;
當單項式的系數為1或—1時,這個“1”應省略不寫,如—ab的系數是—1,a3b的系數是1。
②多項式:
幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數最高的項的次數叫做多項式的次數。
③同類項:
所含字母相同,并且相同字母的指數也相同的項叫做同類項。
注意:
①同類項有兩個條件:a。所含字母相同;b。相同字母的指數也相同。
②同類項與系數無關,與字母的排列順序無關;
③幾個常數項也是同類項。
4、合并同類項法則:
把同類項的.系數相加,字母和字母的指數不變。
5、去括號法則
①根據去括號法則去括號:
括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“—”號,把括號和它前面的“—”號去掉,括號里各項都改變符號。
②根據分配律去括號:
括號前面是“+”號看成+1,括號前面是“—”號看成—1,根據乘法的分配律用+1或—1去乘括號里的每一項以達到去括號的目的。
6、添括號法則
添“+”號和括號,添到括號里的各項符號都不改變;添“—”號和括號,添到括號里的各項符號都要改變。
7、整式的運算:
整式的加減法:(1)去括號;(2)合并同類項。
第四章基本平面圖形
1、線段、射線、直線
名稱
表示方法
端點
長度
直線
直線AB(或BA)
直線l
無端點
無法度量
射線
射線OM
1個
無法度量
線段
線段AB(或BA)
線段l
2個
可度量長度
2、直線的性質
①直線公理:經過兩個點有且只有一條直線。(兩點確定一條直線。)
②過一點的直線有無數條。
③直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。
3、線段的性質
①線段公理:兩點之間的所有連線中,線段最短。(兩點之間線段最短。)
②兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。
③線段的大小關系和它們的長度的大小關系是一致的。
4、線段的中點:
點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。AM = BM =1/2AB (或AB=2AM=2BM)。
5、角:
有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。或:角也可以看成是一條射線繞著它的端點旋轉而成的。
6、角的表示
角的表示方法有以下四種:
①用數字表示單獨的角,如∠1,∠2,∠3等。
②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。
③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。
④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。
注意:用三個大寫字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。
7、角的度量
角的度量有如下規定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。
把1°的角60等分,每一份叫做1分的角,1分記作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。
1°=60’,1’=60”
8、角的平分線
從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
9、角的性質
①角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。
②角的大小可以度量,可以比較,角可以參與運算。
10、平角和周角:
一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。
終邊繼續旋轉,當它又和始邊重合時,所形成的角叫做周角。
11、多邊形:
由若干條不在同一條直線上的線段首尾順次相連組成的'封閉平面圖形叫做多邊形。
連接不相鄰兩個頂點的線段叫做多邊形的對角線。
從一個n邊形的同一個頂點出發,分別連接這個頂點與其余各頂點,可以畫(n—3)條對角線,把這個n邊形分割成(n—2)個三角形。
12、圓:
平面上,一條線段繞著一個端點旋轉一周,另一個端點形成的圖形叫做圓。
固定的端點O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。
圓上任意兩點A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;
由一條弧AB和經過這條弧的端點的兩條半徑OA、OB所組成的圖形叫做扇形。
頂點在圓心的角叫做圓心角。
第五章一元一次方程
1、方程
含有未知數的等式叫做方程。
2、方程的解
能使方程左右兩邊相等的未知數的值叫做方程的解。
3、等式的性質
①等式的兩邊同時加上(或減去)同一個代數式,所得結果仍是等式。
②等式的兩邊同時乘以同一個數((或除以同一個不為0的數),所得結果仍是等式。
4、一元一次方程
只含有一個未知數,并且未知數的最高次數是1的整式方程叫做一元一次方程。
5、移項:
把方程中的某一項,改變符號后,從方程的一邊移到另一邊,這種變形叫做移項。
6、解一元一次方程的一般步驟:
①去分母
②去括號
③移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。)
④合并同類項
⑤將未知數的系數化為1
第六章數據的收集與整理
1、普查與抽樣調查
為了特定目的對全部考察對象進行的全面調查,叫做普查。
其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。
從總體中抽取部分個體進行調查,這種調查稱為抽樣調查,其中從總體抽取的一部分個體叫做總體的一個樣本。
2、扇形統計圖
扇形統計圖:利用圓與扇形來表示總體與部分的關系,扇形的大小反映部分占總體的百分比的大小,這樣的統計圖叫做扇形統計圖。(各個扇形所占的百分比之和為1)
圓心角度數=360°×該項所占的百分比。(各個部分的圓心角度數之和為360°)
3、頻數直方圖
頻數直方圖是一種特殊的條形統計圖,它將統計對象的數據進行了分組畫在橫軸上,縱軸表示各組數據的頻數。
4、各種統計圖的特點
條形統計圖:能清楚地表示出每個項目的具體數目。
折線統計圖:能清楚地反映事物的變化情況。
扇形統計圖:能清楚地表示出各部分在總體中所占的百分比。
數學初一知識點總結5
初一數學下冊期末考試知識點總結一(蘇教版)
第七章 平面圖形的認識(二) 1
第八章 冪的運算 2
第九章 整式的乘法與因式分解 3
第十章 二元一次方程組 4
第十一章 一元一次不等式 4
第十二章 證明 9
第七章 平面圖形的認識(二)
一、知識點:
1、“三線八角”
① 如何由線找角:一看線,二看型。
同位角是“F”型;
內錯角是“Z”型;
同旁內角是“U”型。
② 如何由角找線:組成角的三條線中的公共直線就是截線。
2、平行公理:
如果兩條直線都和第三條直線平行,那么這兩條直線也平行。
簡述:平行于同一條直線的兩條直線平行。
補充定理:
如果兩條直線都和第三條直線垂直,那么這兩條直線也平行。
簡述:垂直于同一條直線的兩條直線平行。
3、平行線的判定和性質:
判定定理 性質定理
條件 結論 條件 結論
同位角相等 兩直線平行 兩直線平行 同位角相等
內錯角相等 兩直線平行 兩直線平行 內錯角相等
同旁內角互補 兩直線平行 兩直線平行 同旁內角互補
4、圖形平移的性質:
圖形經過平移,連接各組對應點所得的線段互相平行(或在同一直線上)并且相等。
5、三角形三邊之間的關系:
三角形的任意兩邊之和大于第三邊;
三角形的任意兩邊之差小于第三邊。
若三角形的三邊分別為a、b、c,
則
6、三角形中的主要線段:
三角形的.高、角平分線、中線。
注意:①三角形的高、角平分線、中線都是線段。
②高、角平分線、中線的應用。
7、三角形的內角和:
三角形的3個內角的和等于180°;
直角三角形的兩個銳角互余;
三角形的一個外角等于與它不相鄰的兩個內角的和;
三角形的一個外角大于與它不相鄰的任意一個內角。
8、多邊形的內角和:
n邊形的內角和等于(n-2)180°;
任意多邊形的外角和等于360°。
第八章 冪的運算
冪(p5
數學初一知識點總結6
1、都是數或字母的積的式子叫做單項式,單獨的一個數或一個字母也是單項式。
2、單項式中的數字因數叫做這個單項式的系數。
3、一個單項式中,所有字母的指數的和叫做這個單項式的次數。
4、幾個單項的和叫做多項式,其中,每個單項式叫做多項式的`項,不含字母的項叫做常數項。
5、多項式里次數項的次數,叫做這個多項式的次數。
6、把多項式中的同類項合并成一項,叫做合并同類項。
合并同類項后,所得項的系數是合并前各同類項的系數的和,且字母部分不變。
7、如果括號外的因數是正數,去括號后原括號內各項的符號與原來的符號相同。
8、如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反。
9、一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。
數學初一知識點總結7
1.代數式:用運算符號“+-×÷”連接數及表示數的字母的式子稱為代數式。
注意:用字母表示數有一定的限制,首先字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式。2.列代數式的幾個注意事項:
13(1)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×1應寫成a;
223(2)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;
a3.幾個重要的代數式:(m、n表示整數)
(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;
(2)若a、b、c是正整數,則兩位整數是:10a+b,則三位整數是:100a+10b+c;
(3)若m、n是整數,則被5除商m余n的數是:5m+n;偶數是:2n,奇數是:2n+1;三個連續整數是:n-1、n、n+1;4.有理數:(1)凡能寫成
q(p,q為整數且p0)形式的數,都是有理數。不是有理數。p正整數正整數正有理數整數零正分數(2)有理數的分類:①有理數零②有理數負整數
負整數正分數負有理數分數負分數負分數(3)注意:有理數中,1、0、-1是三個特殊的數。(4)自然數包括:0和正整數。5.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;
a(a0)a(a0)(2)絕對值可表示為:a0(a0)或a;絕對值的問題經常分類討論;
aa1a0;
aa1a0;
aba。b(4)|a|是重要的非負數,即|a|≥0;注意:|a||b|=|ab|,
臨淵羨魚,不如退而結網!
(3)a2是重要的非負數,即a2≥0;若a2+|b|=0a=0,b=0;
0.120.012底數的小數點移動一位,平方數的小數點移動二位。(4)據規律112101006.科學記數法:把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法。
7.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位。
8.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。9.混合運算法則:先乘方,后乘除,最后加減;10.等式的性質:
等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式。
11.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。
①.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。②.一元一次方程的最簡形式:ax=b(x是未知數,a、b是已知數,且a≠0)。
③.一元一次方程解法的一般步驟:整理方程,去分母,去括號,移項,合并同類項,系數化為1(檢驗方程的解)。
④.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1。12.列方程解應用題的常用公式:
(1)行程問題:距離=速度時間速度距離距離時間;時間速度(2)工程問題:工作量=工效工時工效工作量工作量工時;工時工效(3)比率問題:部分=全體比率比率部分部分全體;全體比率(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;(5)商品價格問題:售價=定價折
售價成本1,利潤=售價-成本,利潤率100%;
成本10(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,
1S正方形=a2,S環形=π(R2-r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=πR2h。
3臨淵羨魚,不如退而結網!
初一下冊知識點總結
1.同底數冪的乘法:aman=am+n,底數不變,指數相加。2.同底數冪的除法:am÷an=am-n,底數不變,指數相減。
3.冪的乘方與積的乘方:(am)n=amn,底數不變,指數相乘;(ab)n=anbn,積的乘方等于各因式乘方的積。4.零指數與負指數公式:(1)a0=1(a≠0);a-n=
1an,(a≠0)。注意:00,0-2無意義。
(2)有了負指數,可用科學記數法記錄小于1的數,例如:0.0000201=2.01×10-5。
5.(1)平方差公式:(a+b)(a-b)=a2-b2,兩個數的和與這兩個數的差的積等于這兩個數的平方差;(2)完全平方公式:
①(a+b)2=a2+2ab+b2,兩個數和的平方,等于它們的平方和,加上它們的積的2倍;②(a-b)2=a2-2ab+b2,兩個數差的平方,等于它們的平方和,減去它們的積的2倍;※③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc6.配方:
p(1)若二次三項式x+px+q是完全平方式,則有關系式:q;
22
2※(2)二次三項式ax2+bx+c經過配方,總可以變為a(x-h)2+k的形式。注意:當x=h時,可求出ax2+bx+c的最大(或最小)值k。1※(3)注意:x2x2。
xx2127.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;
系數不為零時,單項式中所有字母指數的和,叫單項式的次數。
8.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;
多項式里,次數最高項的次數叫多項式的次數;
注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式。9.同類項:所含字母相同,并且相同字母的指數也相同的單項式是同類項。10.合并同類項法則:系數相加,字母與字母的指數不變。
11.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號。
注意:多項式計算的最后結果一般應該進行升冪(或降冪)排列。
臨淵羨魚,不如退而結網!
平面幾何部分
1、補角重要性質:同角或等角的補角相等.余角重要性質:同角或等角的余角相等.2、①直線公理:過兩點有且只有一條直線.線段公理:兩點之間線段最短.
②有關垂線的定理:(1)過一點有且只有一條直線與已知直線垂直;
(2)直線外一點與直線上各點連結的所有線段中,垂線段最短.
比例尺:比例尺1:m中,1表示圖上距離,m表示實際距離,若圖上1厘米,表示實際距離m厘米.3、三角形的內角和等于180
三角形的一個外角等于與它不相鄰的兩個內角的和三角形的一個外角大于與它不相鄰的任何一個內角4、n邊形的對角線公式:
n(n-3)2各個角都相等,各條邊都相等的多邊形叫做正多邊形
5、n邊形的內角和公式:180(n-2);多邊形的外角和等于3606、判斷三條線段能否組成三角形:
①a+b>c(ab為最短的兩條線段)②a-b
擴展閱讀:初中數學七年級上冊知識點總結
提分數學
提分數學七年級上知識清單
第一章有理數
一.正數和負數
⒈正數和負數的概念
負數:比0小的數正數:比0大的`數0既不是正數,也不是負數
注意:①字母a可以表示任意數,當a表示正數時,-a是負數;當a表示負數時,-a是正數;當a表示0時,-a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,-a就不能做出簡單判斷)
②正數有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數的符號是正號。2.具有相反意義的量
若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:零上8℃表示為:+8℃;零下8℃表示為:-8℃
支出與收入;增加與減少;盈利與虧損;北與南;東與西;漲與跌;增長與降低等等是相對相反量,它們計數:比原先多了的數,增加增長了的數一般記為正數;相反,比原先少了的數,減少降低了的數一般記為負數。3.0表示的意義
⑴0表示“沒有”,如教室里有0個人,就是說教室里沒有人;⑵0是正數和負數的分界線,0既不是正數,也不是負數。
二.有理數
1.有理數的概念
⑴正整數、0、負整數統稱為整數(0和正整數統稱為自然數)⑵正分數和負分數統稱為分數
⑶正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。
理解:只有能化成分數的數才是有理數。①π是無限不循環小數,不能寫成分數形式,不是有理數。②有限小數和無限循環小數都可化成分數,都是有理數。
注意:引入負數以后,奇數和偶數的范圍也擴大了,像-2,-4,-6,-8也是偶數,-1,-3,-5也是奇數。2.(1)凡能寫成
q(p,q為整數且p0)形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負p分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;
提分數學
正整數正有理數正分數(2)有理數的分類:①按正、負分類:有理數零
負整數負有理數負分數正整數整數零②按有理數的意義來分:有理數負整數正分數分數負分數總結:①正整數、0統稱為非負整數(也叫自然數)②負整數、0統稱為非正整數③正有理數、0統稱為非負有理數④負有理數、0統稱為非正有理數
(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;
(4)自然數0和正整數;a>0a是正數;a<0a是負數;
a≥0a是正數或0a是非負數;a≤0a是負數或0a是非正數.
三.數軸
⒈數軸的概念
規定了原點,正方向,單位長度的直線叫做數軸。
注意:⑴數軸是一條向兩端無限延伸的直線;⑵原點、正方向、單位長度是數軸的三要素,三者缺一不可;⑶同一數軸上的單位長度要統一;⑷數軸的三要素都是根據實際需要規定的。2.數軸上的點與有理數的關系
⑴所有的有理數都可以用數軸上的點來表示,正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,0用原點表示。
⑵所有的有理數都可以用數軸上的點表示出來,但數軸上的點不都表示有理數,也就是說,有理數與數軸上的點不是一一對應關系。(如,數軸上的點π不是有理數)3.利用數軸表示兩數大小
⑴在數軸上數的大小比較,右邊的數總比左邊的數大;⑵正數都大于0,負數都小于0,正數大于負數;⑶兩個負數比較,距離原點遠的數比距離原點近的數小。
提分數學
4.數軸上特殊的最大(小)數
⑴最小的自然數是0,無最大的自然數;⑵最小的正整數是1,無最大的正整數;⑶最大的負整數是-1,無最小的負整數5.a可以表示什么數
⑴a>0表示a是正數;反之,a是正數,則a>0;⑵a提分數學
⑴一般地,數a的相反數是-a,其中a是任意有理數,可以是正數、負數或0。當a>0時,-a0,那么|a|=a;②如果a0),則x=±a;
⑸互為相反數的兩數的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;|a|是重要的非負數,即
提分數學
|a|≥0;注意:|a||b|=|ab|,
abab⑹絕對值相等的兩數相等或互為相反數。即:|a|=|b|,則a=b或a=-b;
⑺若幾個數的絕對值的和等于0,則這幾個數就同時為0。即|a|+|b|=0,則a=0且b=0。(非負數的常用性質:若幾個非負數的和為0,則有且只有這幾個非負數同時為0)4.有理數大小的比較
⑴利用數軸比較兩個數的大小:數軸上的兩個數相比較,左邊的數總比右邊的數小,或者右邊的數總比左邊的數大
⑵利用絕對值比較兩個負數的大小:兩個負數比較大小,絕對值大的反而小;異號兩數比較大小,正數大于負數。
(3)正數的絕對值越大,這個數越大;(4)正數永遠比0大,負數永遠比0小;(5)正數大于一切負數;
(6)大數-小數>0,小數-大數<0.5.絕對值的化簡
①當a≥0時,|a|=a;②當a≤0時,|a|=-a6.已知一個數的絕對值,求這個數
一個數a的絕對值就是數軸上表示數a的點到原點的距離,一般地,絕對值為同一個正數的有理數有兩個,它們互為相反數,絕對值為0的數是0,沒有絕對值為負數的數。
六.有理數的加減法.
1.有理數的加法法則
⑴同號兩數相加,取相同的符號,并把絕對值相加;
⑵絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值;⑶互為相反數的兩數相加,和為零;⑷一個數與0相加,仍得這個數。2.有理數加法的運算律⑴加法交換律:a+b=b+a⑵加法結合律:(a+b)+c=a+(b+c)
在運用運算律時,一定要根據需要靈活運用,以達到化簡的目的,通常有下列規律:①互為相反數的兩個數先相加“相反數結合法”;
提分數學
②符號相同的兩個數先相加“同號結合法”;③分母相同的數先相加“同分母結合法”;④幾個數相加得到整數,先相加“湊整法”;⑤整數與整數、小數與小數相加“同形結合法”。3.加法性質
一個數加正數后的和比原數大;加負數后的和比原數小;加0后的和等于原數。即:⑴當b>0時,a+b>a⑵當b提分數學
Ⅲ.把分母相同或便于通分的加數相結合(同分母結合法)--
313217+-+-524528321137)+(-+)+(+-)55224818原式=(--
=-1+0-
=-1
Ⅳ.既有小數又有分數的運算要統一后再結合(先統一后結合)(+0.125)-(-3
18312)+(-3)-(-10)-(+1.25)4833121)+(-3)+(+10)+(-1)4834原式=(+)+(+3
18=+3
183121-3+10-14834=(3
31112-1)+(-3)+1044883=2
12-3+102316=-3+13
=10
16617-12+41122151761)+(-)
5151122Ⅴ.把帶分數拆分后再結合(先拆分后結合)-3+10
15原式=(-3+10-12+4)+(-+
=-1+
411+1522提分數學
=-1+
815+3030=-
730Ⅵ.分組結合
2-3-4+5+6-7-8+9+66-67-68+69
原式=(2-3-4+5)+(6-7-8+9)++(66-67-68+69)
=0
Ⅶ.先拆項后結合
(1+3+5+7+99)-(2+4+6+8+100)
七.有理數的乘除法
1.有理數的乘法法則
法則一:兩數相乘,同號得正,異號得負,并把絕對值相乘;(“同號得正,異號得負”專指“兩數相乘”的情況,如果因數超過兩個,就必須運用法則三)法則二:任何數同0相乘,都得0;
法則三:幾個不是0的數相乘,負因數的個數是偶數時,積是正數;負因數的個數是奇數時,積是負數;法則四:幾個數相乘,如果其中有因數為0,則積等于0.2.倒數
乘積是1的兩個數互為倒數,其中一個數叫做另一個數的倒數,用式子表示為a
1=1(a≠0),就是說aa和
111互為倒數,即a是的倒數,是a的倒數。aaa1互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那么a的倒數是;倒數是本身的數
a是±1;若ab=1a、b互為倒數;若ab=-1a、b互為負倒數.注意:①0沒有倒數;
②求假分數或真分數的倒數,只要把這個分數的分子、分母點顛倒位置即可;求帶分數的倒數時,先把帶分數化為假分數,再把分子、分母顛倒位置;
③正數的倒數是正數,負數的倒數是負數。(求一個數的倒數,不改變這個數的性質);④倒數等于它本身的數是1或-1,不包括0。3.有理數的乘法運算律
提分數學
⑴乘法交換律:一般地,有理數乘法中,兩個數相乘,交換因數的位置,積相等。即ab=ba⑵乘法結合律:三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。即(ab)c=a(bc).⑶乘法分配律:一般地,一個數同兩個數的和相乘,等于把這個數分別同這兩個數相乘,在把積相加。即a(b+c)=ab+ac4.有理數的除法法則
(1)除以一個不等0的數,等于乘以這個數的倒數;注意:零不能做除數,即無意義(2)兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得05.有理數的乘除混合運算
(1)乘除混合運算往往先將除法化成乘法,然后確定積的符號,最后求出結果。
(2)有理數的加減乘除混合運算,如無括號指出先做什么運算,則按照‘先乘除,后加減’的順序進行。
a0八.有理數的乘方
1.乘方的概念
求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪。在a中,a叫做底數,n叫做指數。(1)a是重要的非負數,即a≥0;若a+|b|=0a=0,b=0;
0.120.01211(2)據規律2底數的小數點移動一位,平方數的小數點移動二位
101002
22
n2.乘方的性質
(1)負數的奇次冪是負數,負數的偶次冪的正數;注意:當n為正奇數時:(-a)=-a或(a-b)=-(b-a),當
n為正偶數時:(-a)=a或(a-b)=(b-a).
(2)正數的任何次冪都是正數,0的任何正整數次冪都是0。
nnnnnnnn
九.有理數的混合運算
做有理數的混合運算時,應注意以下運算順序:1.先乘方,再乘除,最后加減;2.同級運算,從左到右進行;
3.如有括號,先做括號內的運算,按小括號,中括號,大括號依次進行。
十.科學記數法
把一個大于10的數表示成a10的形式(其中1a10,n是正整數),這種記數法是科學記數法
-9-
n提分數學
近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位.
有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數學計算的最重要的原
則.
特殊值法:是用符合題目要求的數代入,并驗證題設成立而進行猜想的一種方法,但不能用于證明.
等于本身的數匯總:相反數等于本身的數:0倒數等于本身的數:1,-1絕對值等于本身的數:正數和0平方等于本身的數:0,1立方等于本身的數:0,1,-1.
第二章整式的加減
一.用字母表示數(代數初步知識)
1.代數式:用運算符號“+-÷”連接數及表示數的字母的式子稱為代數式.注意:用字母表示數有一定的限制,首先字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式;用基本運算符號把數和字母連接而成的式子叫做代數式,如n,-1,2n+500,abc。2.代數式書寫規范:
(1)數與字母相乘,或字母與字母相乘中通常使用“”乘,或省略不寫;(2)數與數相乘,仍應使用“”乘,不用“”乘,也不能省略乘號;(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a5應寫成5a;13(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a1應寫成a;
223(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;
a
提分數學
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做
a-b和b-a.
出現除式時,用分數表示;
(7)若運算結果為加減的式子,當后面有單位時,要用括號把整個式子括起來。3.幾個重要的代數式:(m、n表示整數)
(1)a與b的平方差是:a-b;a與b差的平方是:(a-b);
(2)若a、b、c是正整數,則兩位整數是:10a+b,則三位整數是:100a+10b+c;
(3)若m、n是整數,則被5除商m余n的數是:5m+n;偶數是:2n,奇數是:2n+1;三個連續整數
是:n-1、n、n+1;
(4)若b>0,則正數是:a+b,負數是:-a-b,非負數是:a,非正數是:-a.
2222222
二.整式
1.單項式:表示數與字母的乘積的代數式叫單項式。單獨的一個數或一個字母也是代數式。
2.單項式的系數:單項式中的數字因數;單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;
3.單項式的次數:一個單項式中,所有字母的指數和
4多項式:幾個單項式的和叫做多項式。每個單項式叫做多項式的項,不含字母的項叫做常數項。多項式里次數最高項的次數,叫做這個多項式的次數。常數項的次數為0。注意:(若a、b、c、p、q是常數)ax+bx+c和x+px+q是常見的兩個二次三項式.
5整式:單項式和多項式統稱為整式,即凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式.整式分類為:整式2
2
單項式多項式.
注意:分母上含有字母的不是整式。
6.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,
叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結果一般應該進行升冪(或降冪)排列.
提分數學
三.整式的加減
1.合并同類項
2同類項:所含字母相同,并且相同字母的指數也相同的項叫做同類項。
3合并同類項的法則:同類項的系數相加,所得的結果作為系數,字母和字母的指數不變。
4合并同類項的步驟:(1)準確的找出同類項;(2)運用加法交換律,把同類項交換位置后結合在一起;(3)利用法則,把同類項的系數相加,字母和字母的指數不變;(4)寫出合并后的結果。5去括號去括號的法則:
(1)括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項的符號都不變;(2)括號前面是“”號,把括號和它前面的“”號去掉,括號里各項的符號都要改變。
6添括號法則:添括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號
里的各項都要變號.
7整式的加減:進行整式的加減運算時,如果有括號先去括號,再合并同類項;整式的加減,實際上是在去括號的基礎上,把多項式的同類項合并.
8整式加減的步驟:(1)列出代數式;(2)去括號;(3)添括號(4)合并同類項。
第三章一元一次方程
1等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!2等式的性質:
等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.3方程:含未知數的等式,叫方程.
4一元一次方程的概念:只含有一個未知數(元)(含未知數項的系數不是零)且未知數的指數是1(次)的整式方程叫做一元一次方程。一般形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).最簡形式:ax=b(x是未知數,a、b是已知數,且a≠0)
1注意:未知數在分母中時,它的次數不能看成是1次。如3x,它不是一元一次方程。
x5解一元一次方程
提分數學
方程的解:能使方程左右兩邊相等的未知數的值叫做方程的解;注意:“方程的解就能代入”驗算!解方程:求方程的解的過程叫做解方程。
等式的性質:(1)等式兩邊都加上或減去同一個數或同一個整式,所得結果仍是等式;(2)等式兩邊都乘或除以同一個不等于0的數,所得結果仍是等式。
6移項
移項:方程中的某些項改變符號后,可以從方程的一邊移到另一邊,這樣的變形叫做移項。
移項的依據:(1)移項實際上就是對方程兩邊進行同時加減,根據是等式的性質1;(2)系數化為1實際上就是對方程兩邊同時乘除,根據是等式的性質2。
移項的作用:移項時一般把含未知數的項向左移,常數項往右移,使左邊對含未知數的項合并,右邊對常數項合并。
注意:移項時要跨越“=”號,移過的項一定要變號。
7解一元一次方程的一般步驟:整理方程、去分母、去括號、移項、合并同類項、未知數的系數化為1;(檢驗方程的解)。
注意:去分母時不可漏乘不含分母的項。分數線有括號的作用,去掉分母后,若分子是多項式,要加括號。解下列方程:(1)4x342x;(2)4x3(20x)6x7(9x);(3)0.1x0.2x130.020.5x15xx1;(4)32638用方程解決問題
列一元一次方程解應用題的基本步驟:審清題意、設未知數(元)、列出方程、解方程、寫出答案。關鍵在于抓住問題中的有關數量的相等關系,列出方程。
解決問題的策略:利用表格和示意圖幫助分析實際問題中的數量關系9列一元一次方程解應用題:
(1)讀題分析法:多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程.
(2)畫圖分析法:多用于“行程問題”
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形
提分數學
各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.
10實際問題的常見類型:
(1)行程問題:路程=時間速度,時間=
路程路程,速度=速度時間(單位:路程米、千米;時間秒、分、時;速度米/秒、米/分、千米/小時)
(2)工程問題:工作總量=工作時間工作效率,工作效率工作時間工作總量;工作總量=各部分工作量的和;
工作效率利潤,售價=標價(1-折扣);進價工作總量;
工作時間(3)利潤問題:利潤=售價-進價,利潤率=
(4)商品價格問題:售價=定價折
售價成本1100%;,利潤=售價-成本,利潤率成本10(5)利息問題:本息和=本金+利息;利息=本金利率(6)比率問題:部分=全體比率比率部分部分全體;全體比率(7)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;
(8)等積變形問題:長方體的體積=長寬高;圓柱的體積=底面積高;鍛造前的體積=鍛造后的體積
(9)周長、面積、體積問題:C圓=2πR,S圓=πR,C長方形=2(a+b),S長方形=ab,C正方形=4a,
2
1222322
S正方形=a,S環形=π(R-r),V長方體=abc,V正方體=a,V圓柱=πRh,V圓錐=πRh.
310.列一元一次方程解應用題:
(1)讀題分析法:多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程.
提分數學
(2)畫圖分析法:多用于“行程問題”
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.
第四章走進圖形世界
1、幾何圖形:
現實生活中的物體我們只管它的形狀、大小、位置而得到的圖形,叫做幾何圖形
從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。
立體圖形:有些幾何圖形的各個部分不都在同一平面內,它們是立體圖形。長方體、正方體、球、圓柱、
圓錐等都是立體圖形。此外棱柱、棱錐也是常見的立體圖形。
平面圖形:有些幾何圖形的各個部分都在同一平面內,它們是平面圖形。長方形、正方形、三角形、圓
等都是平面圖形。
立體圖形與平面圖形:許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。
2、點、線、面、體(1)幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。線:面和面相交的地方是線,分為直線和曲線。面:包圍著體的是面,分為平面和曲面。
體:幾何體也簡稱體。長方體、正方體、圓柱、圓錐、球、棱柱、棱錐等都是幾何體。
包圍著體的是面。面有平的面和曲的面兩種。面和面相交的地方形成線;線和線相交的地方是點;幾何圖形都是由點、線、面、體組成的,點是構成圖形的基本元素。
(2)點動成線,線動成面,面動成體。
3、生活中的立體圖形圓柱柱體
棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、
生活中的立體圖形球體
(按名稱分)圓錐
椎體
提分數學
棱錐
4、棱柱及其有關概念:
棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。側棱:相鄰兩個側面的交線叫做側棱。
n棱柱有兩個底面,n個側面,共(n+2)個面;3n條棱,n條側棱;2n個頂點。
棱柱的所有側棱長都相等,棱柱的上下兩個底面是相同的多邊形,直棱柱的側面是長方形。棱柱的側面有可能是長方形,也有可能是平行四邊形。
5、正方體的平面展開圖:11種
6、截一個正方體:用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。7、三視圖
物體的三視圖指主視圖、俯視圖、左視圖。主視圖:從正面看到的圖,叫做主視圖。左視圖:從左面看到的圖,叫做左視圖。俯視圖:從上面看到的圖,叫做俯視圖。
平面圖形的認識
線段,射線,直線名稱線段射線直線
-16-
不同點延伸性不能延伸只能向一方延伸可向兩方無限延伸端點數21無聯系線段向一方延長就成射線,向兩方延長就成直線共同點都是直的線提分數學
點、直線、射線和線段的表示在幾何里,我們常用字母表示圖形。一個點可以用一個大寫字母表示,如點A
一條直線可以用一個小寫字母表示或用直線上兩個點的大寫字母表示,如直線l,或者直線AB
一條射線可以用一個小寫字母表示或用端點和射線上另一點來表示(端點字母寫在前面),如射線l,射線AB一條線段可以用一個小寫字母表示或用它的端點的兩個大寫字母來表示,如線段l,線段AB
點和直線的位置關系有兩種:
①點在直線上,或者說直線經過這個點。②點在直線外,或者說直線不經過這個點。
線段的性質
(1)線段公理:兩點之間的所有連線中,線段最短。
(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。(3)線段的中點到兩端點的距離相等。
(4)線段的大小關系和它們的長度的大小關系是一致的。(5)線段的比較:1.目測法2.疊合法3.度量法線段的中點:
點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。
M是線段AB的中點
A
直線的性質
MB
AM=BM=
1AB(或者AB=2AM=2BM)2(1)直線公理:經過兩個點有且只有一條直線。(2)過一點的直線有無數條。
(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。(4)直線上有無窮多個點。
(5)兩條不同的直線至多有一個公共點。
經過兩點有一條直線,并且只有一條直線;兩點確定一條直線;點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。
提分數學
直線桑一點和它一旁的部分叫做射線;兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。
角:有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。或:角也可以看成是一條射線繞著它的端點旋轉而成的。
平角和周角:一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續旋轉,當它又和始邊重合時,所形成的角叫做周角。
角的表示:
①用數字表示單獨的角,如∠1,∠2,∠3等。
②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。
③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。
注意:用三個大寫英文字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。
用一副三角板,可以畫出15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°角的度量
角的度量有如下規定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”;度、分、秒是常用的角的度量單位。
把一個周角360等分,每一份就是一度的角,記作1°;
把1°的角60等分,每一份叫做1分的角,1分記作“1’”;把1’的角60等分,每一份叫做1秒的角,1秒記作“1””;角的性質
(1)角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。(2)角的大小可以度量,可以比較(3)角可以參與運算。角的平分線
從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。類似的,
1°=60’,1’=60”
還有叫的三等分線。
AOB平分∠AOC∠AOB=∠BOC=
1∠AOC(或者∠AOC=2∠AOB=2∠2OBBOC)
-18-
C提分數學
余角和補角
①如果兩個角的和是一個直角等于90°,這兩個角叫做互為余角,簡稱互余,其中一個角是另一個角的
余角。用數學語言表示為如果∠α+∠β=90°,那么∠α與∠β互余;反過來,如果∠α與∠β互余,那么∠α+∠β=90°
②如果兩個角的和是一個平角等于180°,這兩個角叫做互為補角,簡稱互補,其中一個角是另一個角的補角。用數學語言表示為如果∠α+∠β=180°,那么∠α與∠β互補;反過來如果∠α與∠β互補,那么∠α+∠β=180°
③同角(或等角)的余角相等;同角(或等角)的補角相等。
對頂角
①一對角,如果它們的頂點重合,兩條邊互為反向延長線,我們把這樣的兩個角叫做互為對頂角,其中一
個角叫做另一個角的對頂角。
注意:對頂角是成對出現的,它們有公共的頂點;只有兩條直線相交時才能形成對頂角。
②對頂角的性質:對頂角相等
如圖,∠1和∠4是對頂角,∠2和∠3是對頂角
2431
∠1=∠4,∠2=∠3
平行線:
在同一個平面內,不相交的兩條直線叫做平行線。平行用符號“∥”表示,如“AB∥CD”,讀作“AB平行于CD”。
注意:(1)平行線是無限延伸的,無論怎樣延伸也不相交。
(2)當遇到線段、射線平行時,指的是線段、射線所在的直線平行。平行線公理及其推論
平行公理:經過直線外一點,有且只有一條直線與這條直線平行。推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。補充平行線的判定方法:
提分數學
(1)平行于同一條直線的兩直線平行。
(2)在同一平面內,垂直于同一條直線的兩直線平行。(3)平行線的定義。垂直:
兩條直線相交成直角,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
直線AB,CD互相垂直,記作“AB⊥CD”(或“CD⊥AB”),讀作“AB垂直于CD”(或“CD垂直于AB”)。
垂線的性質:
性質1:平面內,過一點有且只有一條直線與已知直線垂直。
性質2:直線外一點與直線上各點連接的所有線段中,垂線段最短。簡稱:垂線段最短。點到直線的距離:過A點作l的垂線,垂足為B點,線段AB的長度叫做點A到直線l的距離。同一平面內,兩條直線的位置關系:相交或平行。
圖形知識結構圖:
提分數學
從不同方向看立體圖形
立體圖形展開立體圖形
幾何圖形平面圖形角的度量角角的大小比較余角和補角角的平分線同角(等角)的余角相等;同角(等角)的補角相等等角的余角相等
直線、射線、線段
平面圖形平面圖形
數學初一知識點總結8
一、目標與要求
1、通過處理實際問題,讓學生體驗從算術方法到代數方法是一種進步;
2、初步學會如何尋找問題中的相等關系,列出方程,了解方程的概念;
3、培養學生獲取信息,分析問題,處理問題的能力。
二、重點
從實際問題中尋找相等關系;
建立列方程解決實際問題的思想方法,學會合并同類項,會解ax+bx=c類型的一元一次方程。
三、難點
從實際問題中尋找相等關系;
分析實際問題中的已經量和未知量,找出相等關系,列出方程,使學生逐步建立列方程解決實際問題的思想方法。
四、知識框架
五、知識點、概念總結
1、一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。
2、一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a0)。
3、條件:一元一次方程必須同時滿足4個條件:
(1)它是等式;
(2)分母中不含有未知數;
(3)未知數最高次項為1;
(4)含未知數的項的系數不為0。
4、等式的性質:
等式的性質一:等式兩邊同時加一個數或減去同一個數或同一個整式,等式仍然成立。
等式的性質二:等式兩邊同時擴大或縮小相同的倍數(0除外),等式仍然成立。
等式的性質三:等式兩邊同時乘方(或開方),等式仍然成立。
解方程都是依據等式的這三個性質等式的性質一:等式兩邊同時加一個數或減同一個數,等式仍然成立。
5、合并同類項
(1)依據:乘法分配律
(2)把未知數相同且其次數也相同的相合并成一項;常數計算后合并成一項
(3)合并時次數不變,只是系數相加減。
6、移項
(1)含有未知數的`項變號后都移到方程左邊,把不含未知數的項移到右邊。
(2)依據:等式的性質
(3)把方程一邊某項移到另一邊時,一定要變號。
7、一元一次方程解法的一般步驟:
使方程左右兩邊相等的未知數的值叫做方程的解。
一般解法:
(1)去分母:在方程兩邊都乘以各分母的最小公倍數;
(2)去括號:先去小括號,再去中括號,最后去大括號;(記住如括號外有減號的話一定要變號)
(3)移項:把含有未知數的項都移到方程的一邊,其他項都移到方程的另一邊;移項要變號
(4)合并同類項:把方程化成ax=b(a0)的形式;
(5)系數化成1:在方程兩邊都除以未知數的系數a,得到方程的解x=b/a。
8、同解方程
如果兩個方程的解相同,那么這兩個方程叫做同解方程。
9、方程的同解原理:
(1)方程的兩邊都加或減同一個數或同一個等式所得的方程與原方程是同解方程。
(2)方程的兩邊同乘或同除同一個不為0的數所得的方程與原方程是同解方程。
10、列一元一次方程解應用題:
(1)讀題分析法:多用于和,差,倍,分問題
仔細讀題,找出表示相等關系的關鍵字,例如:大,小,多,少,是,共,合,為,完成,增加,減少,配套—————,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程。
(2)畫圖分析法:多用于行程問題
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。
11、列方程解應用題的常用公式:
12、做一元一次方程應用題的重要方法:
(1)認真審題(審題)
(2)分析已知和未知量
(3)找一個合適的等量關系
(4)設一個恰當的未知數
(5)列出合理的方程(列式)
(6)解出方程(解題)
(7)檢驗
(8)寫出答案(作答)
一元一次方程牽涉到許多的實際問題,例如工程問題、種植面積問題、比賽比分問題、路程問題,相遇問題、逆流順流問題、相向問題分段收費問題、盈虧、利潤問題。
數學初一知識點總結9
一、一元一次不等式的解法:
一元一次不等式的解法與一元一次方程的解法類似,其步驟為:
1、去分母;
2、去括號;
3、移項;
4、合并同類項;
5、系數化為1
二、不等式的基本性質:
1、不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;
2、不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變;
3、不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變。
三、不等式的解:
能使不等式成立的未知數的值,叫做不等式的解。
四、不等式的解集:
一個含有未知數的不等式的所有解,組成這個不等式的解集。
五、解不等式的依據不等式的基本性質:
性質1:不等式兩邊加上(或減去)同一個數(或式子),不等號的方向不變,
性質2:不等式兩邊乘以(或除以)同一個正數,不等號的方向不變,
性質3:不等式兩邊乘以(或除以)同一個負數,不等號的方向改變,
常見考法
(1)考查一元一次不等式的解法;
(2)考查不等式的性質。
誤區提醒
忽略不等號變向問題。
初中數學重點知識點歸納
有理數乘法的運算律
1、乘法的交換律:ab=ba;
2、乘法的結合律:(ab)c=a(bc);
3、乘法的分配律:a(b+c)=ab+ac
單項式
只含有數字與字母的積的代數式叫做單項式。
注意:單項式是由系數、字母、字母的指數構成的。
多項式
1、幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數項。多項式中次數最高的項的次數,叫做這個多項式的次數。
2、同類項所有字母相同,并且相同字母的指數也分別相同的項叫做同類項。幾個常數項也是同類項。
提高數學思維的方法
轉化思維
轉化思維,既是一種方法,也是一種思維。轉化思維,是指在解決問題的.過程中遇到障礙時,通過改變問題的方向,從不同的角度,把問題由一種形式轉換成另一種形式,尋求最佳方法,使問題變得更簡單、清晰。
創新思維
創新思維是指以新穎獨創的方法解決問題的思維過程,通過這種思維能突破常規思維的界限,以超常規甚至反常規的方法、視角去思考問題,得出與眾不同的解
要培養質疑的習慣
在家庭教育中,家長要經常引導孩子主動提問,學會質疑、反省,并逐步養成習慣。
在孩子放學回家后,讓孩子回顧當天所學的知識:老師如何講解的,同學是如何回答的?當孩子回答出來之后,接著追問:“為什么?”“你是怎樣想的?”啟發孩子講出思維的過程并盡量讓他自己作出評價。
有時,可以故意制造一些錯誤讓孩子去發現、評價、思考。通過這樣的訓練,孩子會在思維上逐步形成獨立見解,養成一種質疑的習慣。
數學初一知識點總結10
代數初步知識
1、代數式:用運算符號“+-×÷”連接數及表示數的字母的式子稱為代數式、注意:用字母表示數有一定的限制,首先字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式、
2、列代數式的幾個注意事項:
(1)數與字母相乘,或字母與字母相乘通常使用“”乘,或省略不寫;
(2)數與數相乘,仍應使用“×”乘,不用“”乘,也不能省略乘號;
(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;
(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×112應寫成a;
233(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;
a(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a、
3、幾個重要的'代數式:(m、n表示整數)
(1)a與b的平方差是:a-b;a與b差的平方是:(a-b);
(2)若a、b、c是正整數,則兩位整數是:10a+b,則三位整數是:100a+10b+c;
(3)若m、n是整數,則被5除商m余n的數是:5m+n;偶數是:2n,奇數是:2n+1;三個連續整數是:n-1、n、n+1;
(4)若b>0,則正數是:a+b,負數是:-a-b,非負數是:a,非正數是:-a、2222222
有理數
1、有理數:(1)凡能寫成
qp(p,q為整數且p0)形式的數,都是有理數、正整數、0、負整數統稱整數;正分數、負分數
統稱分數;整數和分數統稱有理數、注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;
正有理數
(2)有理數的分類:
①有理數零負有理數正整數正分數負整數負分數整數
②有理數分數正整數零負整數正分數負分數
(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;
(4)自然數0和正整數;a>0a是正數;a<0a是負數;
1.a≥0a是正數或0a是非負數;a≤0a是負數或0a是非正數、
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線、
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;
(3)相反數的和為0a+b=0a、b互為相反數、
4、絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;
注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(a0)a(a0)a(2)絕對值可表示為:a0(a0)或a;絕對值的問題經常分類討論;
數學初一知識點總結11
一、隋唐科舉制度:
北:P20科舉制是通過分科考試選拔官吏的制度。隋唐時期創立并完善了科舉制度,強調以才能作為選官標準的原則。
二、武則天
北:P13—15武則天是我國歷的女皇帝。
武則天統治時期,不拘一格選拔普通地主中的優秀人才。注重減輕農民負擔,采取各種措施促進社會生產斷續發。當時,人口明顯增長,邊疆得到鞏固和開拓,史稱有“貞觀遺風”,為唐朝全盛時期的到來奠定了基礎。
三、“開元盛世”
北:P15唐玄宗統治前期政局穩定,經濟繁榮,被譽為“開元盛世”。
四、唐與吐蕃的交往:
P28吐蕃是今藏族祖先。文成公主入藏與松贊干布聯姻,密切了唐蕃經濟文化的交流。
五、遣唐使、玄奘西行、鑒真東渡
(一)遣唐使
北:P32遣唐使是日本政府派遣到唐朝進行文化交流的使團;遣唐使把唐朝的典章制度、天文歷法、書法藝術、建筑藝術以及生活習俗等帶回本國,對日本的生產、生活與社會發展產生了深遠影響。
(二)鑒真東渡
北:P33鑒真到達日本除講授佛經,還詳細介紹中斬醫藥、建筑、雕塑、文學、書法、繪畫等技術知識,對中日經濟文化交流做出了杰出貢獻。(識圖P34鑒真東渡示意圖)
(三)玄奘西行
北:P35玄奘是唐朝的高僧,為了求取佛經精義,他西行前往佛教圣地天竺。玄奘是第一個系統地把天竺佛教、歷史、地理、風土人情等記錄下來并介紹到中國的人。(玄奘西行示意圖)
六、列舉“貞觀之治”的主要內容,評價唐太宗:略
經濟重心的南移和民族關系的發展
一、中國古代經濟重心的南移
北:P64魏晉南北朝以來,全國經濟重心出現了南移的趨勢。兩宋時全國的經濟重心從黃河流域轉移到長江流域。
二、成吉思汗統一蒙古和忽必烈建立元朝的史實
北:P75—7612,蒙古貴族在斡難河源召開大會,推舉鐵木真為蒙古族的首領,尊稱為“成吉思汗”,建立蒙古政權1260年,成吉思汗之孫忽必烈繼承蒙古汗位。1271年,忽必烈改國號為元,建立元朝,第二年定都大都。忽必烈為元世祖。
歷史學習方法技巧
一、學會聽課
用新的方式聽老師復習階段的輔導課。復習階段聽老師講課,聽什么?聽思路,聽提煉,聽挖掘,聽補充、聽小結,聽解題方法的指導。聽課過程中,一有所得,當即記于課本天頭地腳處,以供備忘,正如“好記性不如爛筆頭”。
二、學會課后自己整理教材
在歷史能力測試中,分成兩個部分:一是閉卷的選擇題;一是開卷的材料分析題。主要考察同學對歷史史實的認知和遷移以及運用基本的歷史方法解決問題的能力,包括對歷史知識的識記、理解和運用。千變萬化的能力測試題都離不開考察你對教材的認識。所以,要以不變應萬變,抓住教材為本。在整理教材的過程中注意以下幾方面:
(1)知識主干化。在知識結構的框架下,記住其中的主干知識,不要孤立的記憶它。所謂的'主干知識,是指按課標要求掌握的重大歷史事件(或人物)的內容和影響(或作用)。表現在課文中,即是每一課子目的核心內容。這些內容不多,記住的目的是為了突出重點,并能由此而鏈接更多的知識點,提高對知識的積累量,進而提高分析問題的能力和效力,以及準確性。這部分往往會在閉卷的選擇題部分來考察。
(2)知識線索化。在對每一單元知識結構整理的基礎上,聯系比較上一單元和下一單元的知識,整理出本冊書的知識線索,這需要在老師的引導下完成。在知識線索下,加強對知識因果關系的理解,有的事件是一因多果,有的是多因一果,有的是一因多果等等,注意全面、辨證、多角度地分析。并要注意這些歷史對今天社會建設中的啟示。這類知識一般在開卷部分以材料為載體多重設問來體現。有的同學往往認為歷史考試中有很大部分是開卷的,所以沒必要抓教材,殊不知,在考試中時間緊,如果對教材沒整體認識和熟悉,根本沒法在短短的時間內完成檢測內容。因此,教材知識的線索化這個環節尤其重要。
(3)注意教材中的插圖、文獻材料和注釋和課文中補充的小字。課文中的插圖:可以用來加深對課文中相關知識的理解。首先,要善于觀察,抓住其中隱含的歷史信息。其次,掌握一些識圖的技巧,如,注意地形圖中的圖示含義、線條的走向和古今地名國名的變化;了解人物圖中的神態;發現景物圖中的細節和特征等。文獻材料:一般在課文中用黑體字表現,它是史實來源的第一手材料或第二手材料,學習時,注意其出處,聯系課文相關內容,解讀其中語句的含義,這樣能幫助我們提高閱讀能力,形成論從史出、史證結合的學習方法。小字部分往往容易在檢測中以材料的形式出現,考查學生的歸納和知識遷移能力。這個環節的培養有利于我們在考場上把沒見過的材料與我們所學的知識結合起來。
三、注意歷史復習中的記憶方法。
許多歷史知識需要記憶。有好的記憶方法,就能收到事半功倍的效果。歷史知識的記憶法很多,最常用最有效的記憶方法有以下幾種:濃縮記憶法、圖示記憶法、數字歸納記憶法、聯想比較記憶法。
數學初一知識點總結12
概率
一、事件:
1、事件分為必然事件、不可能事件、不確定事件。
2、必然事件:事先就能肯定一定會發生的事件。也就是指該事件每次一定發生,不可能不發生,即發生的可能是100%(或1)。
3、不可能事件:事先就能肯定一定不會發生的事件。也就是指該事件每次都完全沒有機會發生,即發生的可能性為零。
4、不確定事件:事先無法肯定會不會發生的事件,也就是說該事件可能發生,也可能不發生,即發生的可能性在0和1之間。
二、等可能性:是指幾種事件發生的可能性相等。
1、概率:是反映事件發生的可能性的大小的量,它是一個比例數,一般用P來表示,P(A)=事件A可能出現的結果數/所有可能出現的結果數。
2、必然事件發生的概率為1,記作P(必然事件)=1;
3、不可能事件發生的概率為0,記作P(不可能事件)=0;
4、不確定事件發生的概率在0—1之間,記作0
三、幾何概率
1、事件A發生的概率等于此事件A發生的可能結果所組成的面積(用SA表示)除以所有可能結果組成圖形的面積(用S全表示),所以幾何概率公式可表示為P(A)=SA/S全,這是因為事件發生在每個單位面積上的概率是相同的。
2、求幾何概率:
(1)首先分析事件所占的面積與總面積的.關系;
(2)然后計算出各部分的面積;
(3)最后代入公式求出幾何概率。
初一數學學習方法技巧
1、做好預習:
單元預習時粗讀,了解近階段的學習內容,課時預習時細讀,注重知識的形成過程,對難以理解的概念、公式和法則等要做好記錄,以便帶著問題聽課。
2、認真聽課:
聽課應包括聽、思、記三個方面。聽,聽知識形成的來龍去脈,聽重點和難點,聽例題的解法和要求。思,一是要善于聯想、類比和歸納,二是要敢于質疑,提出問題。記,指課堂筆記——記方法,記疑點,記要求,記注意點。
3、認真解題:
課堂練習是最及時最直接的反饋,一定不能錯過。不要急于完成作業,要先看看你的筆記本,回顧學習內容,加深理解,強化記憶。
4、及時糾錯:
課堂練習、作業、檢測,反饋后要及時查閱,分析錯題的原因,必要時強化相關計算的訓練。不明白的問題要及時向同學和老師請教了,不能將問題處于懸而未解的狀態,養成今日事今日畢的好習慣。
5、學會總結:
馮老師說:“數學一環扣一環,知識間的聯系非常緊密,階段性總結,不僅能夠起到復習鞏固的作用,還能找到知識間的聯系,做到了然于心,融會貫通。
6、學會管理:
管理好自己的筆記本,作業本,糾錯本,還有做過的所有練習卷和測試卷。馮老師稱,這可是大考復習時最有用的資料,千萬不可疏忽。
目前初中學生學習數學存在一個嚴重的問題就是不善于讀數學教材,他們往往是死記硬背。重視閱讀方法對提高初中學生的學習能力是至關重要的。新學一個章節內容,先粗粗讀一遍,即瀏覽本章節所學內容的枝干,然后一邊讀一邊勾,粗略懂得教材的內容及其重點、難點所在,對不理解的地方打上記號。然后細細地讀,即根據每章節后的學習要求,仔細閱讀教材內容,理解數學概念、公式、法則、思想方法的實質及其因果關系,把握重點、突破難點。再次帶著研究者的態度去讀,即帶著發展的觀點研討知識的來龍去脈、結構關系、編排意圖,并歸納要點,把書讀懂,并形成知識網絡,完善認識結構,當學生掌握了這三種讀法,形成習慣之后,就能從本質上改變其學習方式,提高學習效率了。
提高聽課質量要培養會聽課,聽懂課的習慣。注意聽教師每節課強調的學習重點,注意聽對定理、公式、法則的引入與推導的方法和過程,注意聽對例題關鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節課最后的小結,這樣,抓住重、難點,沿著知識的發生發展的過程來聽課,不僅能提高聽課效率,而且能由“聽會”轉變為“會聽”。
有疑必問是提高學習效率的有效辦法學習過程中,遇到疑問,抓緊時間問老師和同學,把沒有弄懂,沒有學明白的知識,最短的時間內掌握。建立自己的錯題本,經常翻閱,提醒自己同樣的錯誤不要犯第二次。從而提高學習效率。
數學初一知識點總結13
二元一次方程組
1、二元一次方程:含有兩個未知數,并且含未知數項的次數是1,這樣的方程是二元一次方程。注意:一般說二元一次方程有無數個解。
2、二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組。
3、二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解。注意:一般說二元一次方程組只有解(即公共解)。
4、二元一次方程組的解法:
(1)代入消元法;
(2)加減消元法;
(3)注意:判斷如何解簡單是關鍵。
※5、一次方程組的應用:
(1)對于一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解
(2)對于方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;
(3)對于方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系。
一元一次不等式(組)
1、不等式:用不等號,把兩個代數式連接起來的式子叫不等式。
2、不等式的基本性質:
不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;
不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;
不等式的`基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變。
3、不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集。
4、一元一次不等式:只含有一個未知數,并且未知數的次數是1,系數不等于零的不等式,叫做一元一次不等式;它的標準形式是ax+b0或ax+b0,(a0)。
5、一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點。
數學初一知識點總結14
基本平面圖形
1、直線的性質
(1)直線公理:經過兩個點有且只有一條直線。(兩點確定一條直線。)
(2)過一點的直線有無數條。
(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。
2、線段的性質
(1)線段公理:兩點之間的所有連線中,線段最短。(兩點之間線段最短。)
(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。
(3)線段的大小關系和它們的長度的大小關系是一致的。
3、線段的中點:點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。AM=BM=1/2AB(或AB=2AM=2BM)。
4、角:有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。或:角也可以看成是一條射線繞著它的端點旋轉而成的。
5、角的表示
角的表示方法有以下四種:
①用數字表示單獨的角,如∠1,∠2,∠3等。
②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。
③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。
④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。
注意:用三個大寫字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。
6、角的.度量
角的度量有如下規定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。
把1°的角60等分,每一份叫做1分的角,1分記作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。
1°=60’,1’=60”
7、角的平分線,從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
8、角的性質
(1)角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。
(2)角的大小可以度量,可以比較,角可以參與運算。
9、平角和周角:一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續旋轉,當它又和始邊重合時,所形成的角叫做周角。
10、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個頂點的線段叫做多邊形的對角線。
從一個n邊形的同一個頂點出發,分別連接這個頂點與其余各頂點,可以畫(n-3)條對角線,把這個n邊形分割成(n-2)個三角形。
11、圓:平面上,一條線段繞著一個端點旋轉一周,另一個端點形成的圖形叫做圓。固定的端點O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。
圓上任意兩點A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經過這條弧的端點的兩條半徑OA、OB所組成的圖形叫做扇形。頂點在圓心的角叫做圓心角。
數學初一知識點總結15
1、用加、減、乘(乘方)、除等運算符號把數或表示數的字母連接而成的式子,叫做代數式。(注:單獨一個數字或字母也是代數式)
2、代數式的寫法:數學與字母相乘時,“×”號省略,數字寫在字母前;字母與字母相乘時,相同字母寫成冪的形式;數字與數字相乘時,“×”號不能省略;式中出現除法時,一般寫成分數形式。式中出現帶分數時,一般寫成假分數形式。
3、分段問題書寫代數式時要分段考慮,有單位時要考慮是否要();如:電費、水費、出租車、商店優惠———————。
4、單項式:由數字和字母乘積組成的式子。單獨一個數或一個字母也是單項式。因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,若①分母中不含有字母,②式子中含有加、減運算關系,也不是單項式。
單項式的系數:是指單項式中的數字因數;(不要漏負號和分母)
單項數的次數:是指單項式中所有字母的指數的和。(注意指數1)
5、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式。每個單項式稱項,(其中不含字母的項叫常數項)多項式的次數是指多項式里次數最高項的'次數(選代表);多項式的項是指在多項式中每一個單項式。特別注意多項式的項包括它前面的性質符號。它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。
6、代數式分為整式和分式(分母里含有字母);整式分為單項式和多項式。
【數學初一知識點總結】相關文章:
數學初一知識點總結07-03
初一的數學知識點總結03-19
初一數學知識點總結05-29
初一數學下冊知識點總結07-11
初一數學下冊知識點總結11-22
初一數學知識點總結04-18
初一數學知識點總結10-16
初一數學下冊的知識點總結07-25
初一數學下知識點總結12-06
初一數學基本知識點總結08-11