數學必修二圓的方程知識點總結
總結是指對某一階段的工作、學習或思想中的經驗或情況加以總結和概括的書面材料,它可以給我們下一階段的學習和工作生活做指導,快快來寫一份總結吧。但是卻發現不知道該寫些什么,以下是小編收集整理的數學必修二圓的方程知識點總結,希望能夠幫助到大家。
圓的方程
1、圓的定義:平面內到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。
2、圓的方程
。1)標準方程,圓心,半徑為r;
(2)一般方程
當時,方程表示圓,此時圓心為,半徑為
當時,表示一個點;當時,方程不表示任何圖形。
(3)求圓方程的方法:
一般都采用待定系數法:先設后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的`位置。
3、直線與圓的位置關系:
直線與圓的位置關系有相離,相切,相交三種情況:
。1)設直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程
。3)過圓上一點的切線方程:圓(x—a)2+(y—b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0—a)(x—a)+(y0—b)(y—b)=r2
4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設圓,
兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當時兩圓外離,此時有公切線四條;
當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;
當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當時,兩圓內切,連心線經過切點,只有一條公切線;
當時,兩圓內含;當時,為同心圓。
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點
數學如何預習
上課前對即將要上的數學內容進行閱讀,做到心中有數,以便于掌握聽課的主動權。這樣有利于提高學習能力和養成自學的習慣,所以它是數學學習中的重要一環。
(1)看書要動筆。(不動筆墨不讀書)
、僖话悴捎眠呴喿x、邊思考、邊書寫的方式,把內容的要點、層次、聯系劃出來或打上記號,寫下自己的看法或在弄不懂的地方與問題上做記號;
②預習時一旦發現舊知識掌握得不好,甚至不理解時,就要及時翻書查閱摘抄,采取措施補上,為順利學習新內容創造條件。
③了解本節課的基本內容,也就是知道要講些什么,要解決什么問題,采取什么方法,重點關鍵在哪里等等。
④要把某一本練習冊所對應的章節拿出來大致看一遍,看哪些題一下能看會,哪些題根本看不懂,然后帶著疑問去聽課。
成數概念
一數為另一數的幾成,泛指比率:應在生產組內找標準勞動力,互相比較,評成數。
表示一個數是另一個數的十分之幾的數,叫做成數。
通常用在工農業生產中表示生產的增長狀況。幾成就是十分之幾。
例如,糧食產量增產“二成”。
“二成”即是十分之二,也就是糧食產量增加了20%。
在計算成數時,設有甲、乙兩數,求乙數對于甲數的比,并把比值化成純小數,那么所得的純小數叫做乙數對于甲數的成數。其中小數第一位叫做“成”或“分”,第二位叫做“厘”。
例如,計劃糧食產量為5萬斤,實際多產了1萬斤,那么糧食增產的成數是1÷5=0.2,即糧食增產了二成。
成數與其他數的互化
方法:分數X10=成數成數/10=小數(成數除以10等于小數)成數X10=百分數
【數學必修二圓的方程知識點總結】相關文章:
高一數學必修一知識點總結08-09
高中數學必修四知識點總結12-03
高中數學知識點必修一總結大全01-05
高一政治必修一知識點總結05-09
數學教案:《方程的意義》12-18
小學數學方程教學設計12-30
高中地理必修一知識點總結人教版01-06
高一物理必修一知識點總結05-04
高一語文必修一知識點總結01-12