拋物線是數學函數中的基礎,而相關的知識點也有一定的難度。下面是小編推薦給大家的拋物線知識點總結,希望能帶給大家幫助。
拋物線知識點總結
1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當=b^2-4ac=0時,P在x軸上。
3.二次項系數a決定拋物線的開口方向和大小。
當a0時,拋物線向上開口;當a0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab0),對稱軸在y軸左;
當a與b異號時(即ab0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點個數
=b^2-4ac0時,拋物線與x軸有2個交點。
=b^2-4ac=0時,拋物線與x軸有1個交點。
=b^2-4ac0時,拋物線與x軸沒有交點。X的取值是虛數(x=-bb^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)
拋物線
y = ax^2 + bx + c (a≠0)
就是y等于a乘以x 的平方加上 b乘以x再加上 c
置于平面直角坐標系中
a > 0時開口向上
a < 0時開口向下
(a=0時為一元一次函數)
c>0時函數圖像與y軸正方向相交
c< 0時函數圖像與y軸負方向相交
c = 0時拋物線經過原點
b = 0時拋物線對稱軸為y軸
(當然a=0且b≠0時該函數為一次函數)
還有頂點公式y = a(x+h)* 2+ k ,(h,k)=(-b/(2a),(4ac-b^2)/(4a))
就是y等于a乘以(x+h)的平方+k
-h是頂點坐標的x
k是頂點坐標的y
一般用于求最大值與最小值和對稱軸
拋物線標準方程:y^2=2px (p>0)
它表示拋物線的焦點在x的正半軸上,焦點坐標為(p/2,0) 準線方程為x=-p/2
由于拋物線的焦點可在任意半軸,故共有標準方程y^2=2px y^2=-2px x^2=2py x^2=-2py